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Preface

This volume contains papers presented at the 5th International Conference on
Modeling Decisions for Artificial Intelligence (MDAI 2008), held in Sabadell, Cat-
alonia, Spain, October 30-31. This conference followed MDAI 2004 (Barcelona,
Catalonia, Spain), MDAI 2005 (Tsukuba, Japan), MDAI 2007 (Tarragona, Cat-
alonia, Spain), and MDAI 2008 (Kitakyushu, Japan) with proceedings also pub-
lished in the LNAI series (Vols. 3131, 3558, 3885, and 4617).

The aim of this conference was to provide a forum for researchers to dis-
cuss the theory and tools for modeling decisions, as well as applications that
encompass decision-making processes and information-fusion techniques.

The organizers received 43 papers from 15 different countries, from Asia,
Europe, and America, 19 of which are published in this volume. Each submission
received at least two reviews from the Program Committee and a few external
reviewers. We would like to express our gratitude to them for their work. The
plenary talks presented at the conference are also included in this volume.

The conference was supported by the IIIA-CSIC, the UNESCO Chair in Data
Privacy, the Japan Society for Fuzzy Theory and Intelligent Informatics (SOFT),
the Catalan Association for Artificial Intelligence (ACIA), the European Soci-
ety for Fuzzy Logic and Technology (EUSFLAT), the Spanish MEC (ARES -
CONSOLIDER INGENIO 2010 CSD2007-00004), and the City of Sabadell.

July 2008 Vicenç Torra
Yasuo Narukawa
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Toward Elucidating Language

Functions in the Brain

Michio Sugeno

Faculty of Culture and Information Science, Doshisha University,
1-3 Tatara Miyakodani, Kyotanabe City, Kyoto, 610-0394 Japan

Human intelligence is characterized by the use of language rather than the
brain hardware. The human brainware consists of a neural system as hard-
ware and a language system as software. Language was created by the brain
hardware, and the human brain evolved together with language over millions
of years. It is, therefore, necessary to take two approaches to create the human
brain: a hardware-centered approach and a software-centered approach. While
the hardware-centered approach is based on computational neuroscience, it is
possible to base the software-centered approach on linguistics.

With this in mind, we discuss the higher-order language functions in the
brain. There are three approaches to elucidate the language functions: top-down,
intermediate, and bottom-up. In the top-down approach we start from existing
phenomena of language and in the bottom-up approach we start from neural
processes to deal with language. The intermediate approach is something lying
between the two. A major difficulty in elucidating language functions is that we
lack experimental tools to directly observe detailed brain activities in dealing
with language. Therefore it is desirable and rather inevitable to combine all
possible approaches.

In this study we refer, as the basic theory, to Systemic Functional Linguistics
(SFL) initiated by Halliday. SFL systematically describes language the system
of which consists of four strata: phonology, lexicogrammar, semantics, and con-
text. There are three metafunctions in language: ideational, interpersonal, and
textual. These metafunctions penetrate the four strata. For example in the stra-
tum of semantics, metafunctions appear as ideational, interpersonal, and textual
meanings. Interpersonal meaning is ordinary meaning concerned with constru-
ing experience by seeing, hearing, thinking, and so on, interpersonal meaning
concerned with enacting interpersonal relations through language, and textual
meaning concerned with organizing ideational and interpersonal meanings as
discourse.

In the top-down approach, we have developed a computational model of lan-
guage which consists of the semiotic base describing the system of language, and
the algorithms of text understanding/generation with the semiotic base. The
brain is supposed to contain a neuro-computational system of language in its
nature. Our ultimate goal is to identify this system. Since existing language was
created by the brain and language phenomena can be fully observed, it is pos-
sible to develop a computational model of language starting from a theoretical

V. Torra and Y. Narukawa (Eds.): MDAI 2008, LNAI 5285, pp. 1–2, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 M. Sugeno

model provided by linguistics. Based on a computational model, we shall be able
to infer a neuro-computational model of language.

As for the intermediate approach, we discuss the stratified system of language
in the brain by introducing some clinical evidence obtained from studies on apha-
sia. According to the Yamadorifs studies, the stratification of language suggested
by SFL is also realized in the brain; lexicogrammar and semantics are processed
in the left hemisphere while context is processed in the right hemisphere.

In the bottom-up approach, we have conducted brain experiments to analyze
dynamical processes in understanding the meanings of texts with and without
honorific expressions. The aim of this study is to elucidate the difference of
brain activities during processing ideational meaning and interpersonal meaning,
where texts with honorific expressions contain interpersonal meaning and texts
without honorific expressions mainly hold ideational meaning.

Two kinds of sentences with and without honorific expressions were sequen-
tially shown to subjects. We measured electroencephalograms and acquired
event-related potentials. Then using equivalent current dipole source localization
method, we analyzed the activation of the brain. It was found that the brain ac-
tivities for understanding sentences with honorific expressions are different from
those produced for understanding sentences without honorific expressions.



Privacy-Preserving Similarity Evaluation and

Application to Remote Biometrics
Authentication

Hiroaki Kikuchi1, Kei Nagai1, Wakaha Ogata2, and Masakatsu Nishigaki3

1 Department of Communication and Network Engineering,
School of Information and Telecommunication Engineering, Tokai university

1117 Kitakaname, Hiratsuka, Kangawa, 259-1292, Japan
Tel.: +81-463-58-1211, Fax: +81-463-50-2412,

kikn@tokai.ac.jp
2 Graduate School of Innovation Management,
Tokyo Institute of Technology, Tokyo, Japan

wakaha@mot.titech.ac.jp
3 Graduate School of Science and Technology, Shizuoka University

Shizuoka, Japan
nishigaki@inf.shizuoka.ac.jp

Abstract. In this paper, a new method for secure remote biometric au-
thentication preventing the vulnerability of compromised biometrics is
presented. The idea is based on a public-key cryptographical protocol,
referred as Zero-knowledge Proof, which allows a user to prove that she
has surely a valid biometric data without revealing the data. Hence, the
scheme is free from the risk of disclosure of biometric data. Even if a
malicious administrator has a privilege access to the private database,
it is infeasible for him to learn the private template. This paper stud-
ies two well-known definitions, the cosine correlation and the Euclidean
distance as similarities of given two feature vectors. Both similarities are
defined with some multiplications and additions, which can be performed
in privacy-preserving way because of the useful property of public-key
commitment scheme, additive homomorphism. The estimation based on
the experimental implementation shows that the private Euclidean dis-
tance scheme archives better accuracy in terms of false acceptance and
rejection than the private cosine coloration scheme, but it requires about
5/2n� overhead to evaluate n-dimension feature vectors consisting of
�-bit integers.

1 Introduction

Biometrics identifiers are now commonly used to identify individuals in more
secure and more efficient ways than the conventional password-based methods.
Typically, the biometric identifiers including fingerprint, vein, iris, facial images
are scanned and processed in appropriate algorithm to extract a feature vector,
called template, which will be compared to newly scanned image to verify that
the owner of the biometric data is legitimate or not.

V. Torra and Y. Narukawa (Eds.): MDAI 2008, LNAI 5285, pp. 3–14, 2008.
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4 H. Kikuchi et al.

The biometric recognition, however, are mostly made in local environment,
e.g., a matching with the template data stored in secure smartcard (in ATM
cards), or a user authentication at personal laptop PCs. The reason of limitation
in local is the known vulnerabilities of remote biometric authentication that once
a biometric template is stolen, it is stolen forever and can not be recovered. If
we store our biometric data to some service provider, we immediately face risks
that the server may be compromised, or a malicious administrator of the server
may learn our highly private data and can disclose it.

Many researchers points out the issue in remote biometrics authentication
and several attempts addressing it have been made. Ratha et al. [4] propose a
“cancelable biometrics”, using a morphing technique to transform a biometrical
data into a randomized form, which depends on given morphing function. Jeong
et al. [5] propose a changeable biometrics for face recognition using the princi-
pal component analysis (PCA) and the independent component analysis (ICA).
Given two vectors chosen from PCA and ICA coefficients, they extract from an
input face image the transformed vector according to a scrambling rule. When
the transformed template is compromised, the scrambling rules is replaced by a
new one. Juels and Sudan’s “fuzzy vault scheme” [6] is an improvement upon the
previous work by Juels and Wattenberg [8]. In [6], they use the polynomial recon-
struction problem based on an error-collection code such as the Reed-Solomon.
Clancy et al. [7] proposed a “fingerprint vault system” based on the fuzzy vault.
Using multiple minutiae location sets, they use a canonical positions of minutiae,
as the elements of a set. Uludag et al. [12] proposed a fuzzy vault system for
fingerprint using the Lagrange interpolation and the Cyclic Redundancy Check
(CRC) for testing polynomial reconstruction instead of the error-collection step.

In this paper, we present a new method for secure remote biometric authen-
tication preventing the vulnerability of compromised biometrics. Our idea is
based on a public-key cryptographical protocol, referred as Zero-knowledge Proof,
which allows a user to prove that she has surely a valid biometric data without
revealing the data. Hence, the scheme is free from the risk of disclosure of biomet-
ric data. Even if the administrator with privilege access to the private database
is malicious, it is infeasible to learn the private template. Without learning the
template stored at the server, he performs an evaluation of similarities between
the template and the new input in privacy-preserving way.

The zero-knowledge proof is generally “expensive” in terms of communication
and computation costs. The performance of schemes depends on what similarity
measure is used to securely evaluated. In this paper, we study two well-known
definitions, the cosine correlation and the Euclidean distance as similarities of
given two feature vectors. Both similarities are defined with some multiplications
and some additions, which can be performed in privacy-preserving way because
of the useful property of public-key commitment scheme, additive homomor-
phic. The estimation based on the experimental implementation shows that the
private Euclidean distance scheme achieves better accuracy in terms of false ac-
ceptance and rejection than the private cosine correlation scheme, but it requires
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about 5/2n� overhead to evaluate n-dimension feature vectors consisting of �-bit
integers.

2 Preliminaries

2.1 Similarities

Let a = (a1, . . . , an) and b = (b1, . . . , bn) be n-dimensional vectors of Rn. We
consider the following two well-known similarities between a and b, which will
be evaluated in privacy-preserving way in later section.

Definition 1. A Cosine Correlation is a similarity between a and b defined as

c(a, b) =
a · b

||a|| · ||b|| =
a1b1 + · · · + anbn√

a2
1 + · · · + a2

n

√
b2
1 + · · · + b2

n

where ||a|| is a norm of a.

Definition 2. An Euclidean Distance, d(a, b), is defined as

d(a, b) = ||a − b|| =

√√√√ n∑
i

(ai − bi)2.

For simplification, taking the normalization of a and b, we can reduce the com-
putational cost of cosine correlation as c(a/||a||, b/||b||) = a · b. Taking squared
as d(a, b)2, we can omit the computation of squire root for Euclidean similarity.

2.2 Secure Commitment

A commitment is a cryptographical primitive to commit to a value while keeping
it hidden, and to reveal the committed value later.

A function E(m, r) is considered as secure commitment to message m, where
r is random number, if it satisfies

1. no information reveals from E(m, r), and
2. no one finds m′ �= m and r′ such that E(m, r) = E(m′, r′).

Fujisaki and Okamoto proposed in [2] a probabilistic commitment scheme based
on the integer factorization problem as follows.

Definition 3. Let N be a composite number that no one knows the factors,
and g and h be elements of ZN such that logg h is not known by anybody. A
commitment to m is

E(m, r) = gmhr mod N,

where r is random number.

The Fujisaki-Okamoto commitment has an additive homomorphism, a useful
property for privacy-preserving computation, satisfying

E(m, r) × E(m′, r′) = E(m + m′, r + r′) and E(m, r)x = E(mx, rx),

where the addition m + m′ is an ordinary arithmetic (not modular arithmetic)
since we don’t know the order of g and h.
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2.3 Zero-Knowledge Proof of Commitment

We introduce a cryptographical protocol for proving that a committed value m
lines in a specific interval [a, b] without revealing m, often known as Boudot’s
Range Proof [9].

Definition 4. Let F be a commitment E(m, r) to message m. A proof of knowl-
edge of commitment is a cryptographical protocol allowing a prover to show that
committed m is in [a, b] without revealing m to a verifier, denoted by

PK
{
m, r
⏐⏐ F = E(m, r) ∧ m ∈ [a, b]

}
where r is uniformly chosen over [−2sN+1, 2sN−1] and s is a security parameter
(e.g, s = 160 [bit]).

The range proof takes about five times of overhead of a standard zero-knowledge
proof of the committed value PK{m

∣∣ F = E(m, r)}. Namely, it is expensive in
terms of both computation and communication.

3 Private Similarity Evaluations

3.1 Overview and Assumption

In our model, Alice, a user who tries to prove her identity to server, interacting
with Bob, a server who authenticate Alice based on the data Alice has registered
with Bob. Assume that Alice does not fully trust Bob, who is a honest-but-curious
party having a chance to reveal her private information. Instead of her private
biometric data x = (x1, . . . , xn), Alice registers the commitment of x, E(x),
from which Bob can not learn x. To authenticate her to Bob, Alice scans her
fresh biometric data y = (y1, . . . , yn) such that xi ≈ yi for i = 1, . . . , n, and
proves x ≈ y to Bob without revealing y (nor x) in the zero-knowledge proof of
similarities between x and y.

There are many efficient protocols for proving several kinds of equalities in
zero-knowledge way, and we need to prove privately that y is “close” to x. It
is not so hard to implement the fuzzy matching if Alice is allowed to access her
tamper-proof device to recover x to be compared with new one y. In the next
section, we will show that the states-of-the-art cryptographical protocols allow
us to evaluate similarities between any given committed vectors and to show the
difference is within a range, without disclosing private biometric data to anyone.
Hence, the protocol is free from the risk of private information disclosure.

3.2 Private Cosine Correlation Evaluation

We show a protocol for secure evaluation of a cosine correlation given x and y
in Figure 1.

First of all, Alice needs to compute the commitment to her true private input
x using random values r1, . . . , rn chosen uniformly over ZN , as Ei = E(xi/c, ri)
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Protocol Private-Cosine
Input: x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Zn

N .

1. (Registration) Alice sends to Bob the commitment to her private input x,
E1, . . . , En, where Ei is defined E(xi/c, ri) = gxi/chri with random ri ∈ ZN for
i = 1, . . . , n, and c is the norm of x, i.e., c = ||x||.

2. (Authentication) Alice computes a commitment to her scanned input y =

(y1, . . . , yn), G1, . . . , Gn such that Gi = E
yi/c′

i for i = 1, . . . , n, where c′ = ||y||.
She proves to Bob that she knows the committed input y in the zero-knowledge
proof

PK1 = PK
�

yi/c′ �� Gi = E
yi/c′

i

�

for i = 1, . . . , n.
3. Bob verifies PK1 for all i and then computes DC =

�n
i Gi if PK1 is valid.

4. Alice computes a similarity dC = c(x, y) and proves to Bob that she knows y that
nearly equals to x in the zero-knowledge proof

PK2 = PK
�
dC , RC

�� DC = E(dC , RC) ∧ dC ∈ [τ1, 1]
�

,

where RC =
�n

i=1 riyi/c′.
5. Bob authenticates Alice if he verifies PK2.

Fig. 1. Protocol for Cosine correlation evaluation

for i = 1, . . . , n. For reducing computational cost, we use the norm c = ||x|| to
normalize the committed input xi. The random values are used for making the
commitment indistinguishable against Bob in a sense that he can distinguish
two messages with negligible probability.

The key idea of the protocol is to evaluate the cosine correlation between
template data x and an input data y without revealing private x and y. The
additive homomorphic property of the commitment scheme allows Bob to com-
pute the commitment of the cosine correlation between hidden x and y at the
third step as follows,

DC =
n∏

i=1

Gn
i=1 =

n∏
i=1

E(xi/c, ri)yi/c′
=

n∏
i=1

E(xiyi/cc′, riyi/c′)

= E(
1

||x|| ||y||

n∑
i=1

xiyi,

n∑
i=1

riyi/c′) = E(c(x, y), RC))

where RC is a random element computed as
∑n

i=1 riyi/c′. Since Alice is allowed
to access the tamper-proof device to obtain random values used to commit x,
she is able to learn RC , and thereby get dC . She also needs to prove to Bob that
the commitment Gi has been correctly computed as defined formula without
revealing yi in PK1.
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Protocol Private-Euclid
Input: x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Zn

N .

1. (Registration) Alice sends to Bob two sequences of commitments, E1, . . . , En, and
Ẽ1, . . . , Ẽn, where

Ei = E(xi, ri), Ẽi = E(x2
i , r̃i)

ri and r̃i are random values chosen from ZN , for i = 1, . . . , n. Alice proves to Bob
that she knows the corresponding input x committed by Ei, Ẽi is the commitment
to xi squared in zero-knowledge proof

PK3 = PK
�

xi, ri

�� Ei = E(xi, ri) ∧ Ẽi = Exi
i

�
.

Bob adds the commitments to template database if PK3 is valid.
2. (Authentication) Alice computes three sequences of commitments with respect to

her scanned input y = (y1, . . . , yn),

Fi = E(yi, r
′
i), F̃i = E(y2

i , r̃′
i), and Gi = Eyi

i ,

for i = 1, . . . , n. Where, r′
i and r̃′

i are random values. She proves to Bob that the
commitments have been properly computed in the zero-knowledge proof

PK4 = PK
�

yi, r
′
i

�� Fi = E(yi, r
′
i), ∧F̃i = F yi

i ∧ Gi = Eyi
i

�

for i = 1, . . . , n.
3. Bob computes DE =

�n
i=1 ẼiF̃i/G2

i if PK4 is valid for all i.
4. Alice computes the Euclidean distance dE = d(x, y) and proves to Bob that she

knows y that nearly equals to x in a sense of Euclidean distance, using the zero-
knowledge proof

PK5 = PK
�
dE, RE

�� DE = E(dE , RE) ∧ dE ∈ [0, τ2]
�

,

where RE =
�n

i=1 rixi − 2riyi + r̃′
i.

5. Bob authenticates Alice if he verifies PK5.

Fig. 2. Protocol for Euclidean Distance evaluation

At the end of the protocol, using the Boudot’s range proof[9] and the con-
junctive proof of knowledge[11] (ZK2), she can finally convince Bob that she has
valid input y such that the similarities dC = c(x, y) is less than pre-determined
threshold τ1, which means that Alice is surely a legitimate user.

3.3 Private Euclidean Distance Evaluation

Figure 2 shows the protocol Private-Euclid for proving Alice’s private identity y
is within the distance τ2 from registered x. In addition to the protocol Private-
Cosine, it requires Alice to commit x squared as Ẽi at the registration step.
Implicitly, we use notation X for the commitment to x, and X̃ for the commit-
ment to x2 in the figure.



Privacy-Preserving Similarity Evaluation and Application 9

Table 1. Experiment Environment

item values

fingerprint scanner Digital Persona U. are .U4000
Digital Persona Gold SDK 2.5.0

fingerprint images 50 genuine and 450 imposter images
resolution 300 × 300 [pixel]

image processing NIST NFIS2[3]
software proprietary application with Java version 1.5.0 06,
platform Windows XP, 1.00 GHz, 512 MB

The additive homomorphic property allows us to privately evaluate the Euclid-
ean distance between x and y at side of Bob, at Step 3, as follows,

DE =
n∏

i=1

ẼiF̃i/G2
i =

n∏
i=1

E(x2
i , rixi)E(y2

i , r̃′i)/E(2xiyi, 2riyi)

=
n∏

i=1

E(x2
i + y2

i − 2xiyi, rixi + r̃′i − 2riyi)

= E(
n∑

i=1

x2
i − 2xiyi + y2

i , RE) = E(||x − y||2, RE),

letting RE be a constant defined as
∑n

i=1 rixi − 2riyi + r̃′i. For constructing zero-
knowledge protocols PK3, PK4 and PK5, we add a protocol proving that a com-
mitted number is squared number, presented in [9]. If all proofs are valid, Bob
convince that Alice is a legitimate user who has registered x and hence is able to
show the correctly computed commitment of ||x − y||2 less than threshold τ2.

4 Evaluation

Most zero-knowledge protocols are designed to be secure in the cost of com-
municational and computational overhead, which are not often considered as
significant. There are a trade-off between performance and security, e.g., reduc-
ing a probability being impersonated by half requires double amount of bits to
be computed. In addition, we claim that there is one more trade-off between ac-
curacy and performance in secure biometric authentication. The accuracy (and
the performance) depends on a function for similarity to be evaluated in zero-
knowledge protocol. Hence, it is not trivial to identify the optimal function of
similarity for the multiple objective requirements involved each other.

4.1 Feature Vector

To compare two similarities, we performed some experiments using actual finger-
print images under the environment listed in Table 1. More than 500 live
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fingerprints are scanned and performed some sorts of image processing and extrac-
tion algorithms, which yield the feature vectors, called ridge-valley orientation.

The feature vector consists of a 18 × 18 matrix of orientations of ridges and
valleys of the surface of finger, taking average for each local 16× 16-pixel image.
The ridge-valley orientation is quite stable against a transformation of images,
thus good for the evaluation of similarities of high-dimension vectors. While, it
needs to deal with empty portions of image caused by miss-scanning. To avoid
some elements of feature from being zero, we take n = L2 elements from the core
of the 18 × 18 matrix. The accuracy of authentication depends on dimension n
of the feature, and hence the optimal dimension is a significant issue. Figure 3
shows the variance of similarities (Euclidean distance) of two fingerprint images
with respect to dimensions n = 2 × 2, 4 × 4, . . . , 18 × 18. From the observation
of the result, we see that n > 10 × 10 provides a good enough similarities to
distinguish two images.
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Figure 4 shows two distributions of cosine correlations; one between genuine
and imposter images (labeled as “Imposter”), and the other one between two
distinct images chosen from genuine images (as “Genuine”). The dimension of
feature vector is n = 82. The genuine images are distributed within a narrow area
of range, while the distribution of imposter images is broad. These distributions
look almost disjoint, that is, the classification hardly ever fails.

The Euclidean distances of two feature vectors are distributed as well, shown
in Figure 5. In comparison of two similarities, the distribution of genuine images
is quite separate from that of imposter images in the Euclidean distance, while
these are distributed closely in cosine correlations. Therefore, the accuracy of
Euclidean distance is likely to be better than that of the cosine correlation.

4.2 Accuracy

We show the accuracy of authentication schemes based on the similarities in
Figure 6, where overall accuracy is given as Equal Error Rate (ERR) of n = 122

feature vectors with respects to thresholds τ1 and τ2. An ERR is the rate at
which both accept and reject errors are equal. Obviously, the experiment means
that the Euclidean distance is superior in accuracy to the cosine correlation
for all dimensions n. The result is compatible with the analysis of distributions
studied in the above section.

Figure 7 show the Relative Operating Characteristic plot (ROC) for partic-
ular dimension n = 182, illustrating the change of False Rejection Rate (FRR)
with respects to False Acceptance Rate (FAR). We observe that the tradeoff
between these rates by varying thresholds, and the cosine correlation has higher
error rate than the Euclidean distance. After all, the Euclidean distance is the
better similarity measure than the cosine correlation in terms of dimensions and
thresholds.
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4.3 Performance

There are two factors for performance of protocols; a computational cost and
a communication cost. The former is estimated as a number of modular expo-
nentiations, which is the dominant factor of processing time, for each step in
zero-knowledge proof. The latter is the function taking dimension n and size of
modulus � = |N |, typically � = 1024 bit. We summarise the estimation of both
costs in Table 2. The estimation shows that the Euclidean distance requires
about double (5/2n�) overhead to evaluate n-dimension vectors consisting of
�-bit integers, in theory.

In addition to the estimation from equations, we measure the processing time
based on sample implementation of the protocols. Figure 8 shows the exper-
imental result, where the constant is � = |N | = 1024, security parameter in
zero-knowledge protocol is t = 160 bit, and dimension of feature vector ranges



Privacy-Preserving Similarity Evaluation and Application 13

Table 2. Estimation of costs for two protocol

Private-Cosine Private-Euclid
Computation 1. PK1/PK4 3n 11n

3. PK2/PK5 19 × 2 19 × 2

total 3n + 38 11n + 38

Communication 1. G/G, F̃ n� 2n�
PK1/PK4 n� 3n�

3. PK2/PK5 5� × 2 5� × 2

total �(2n + 10) �(5n + 10)
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from 2×2 to 18×18. We confirm that the estimation is compatible with the ex-
perimental result. Note that there is a constant amount of time at n = 0, which
means the overhead caused at PK2 and PK5. In typical setting, say n = 82,
protocol Private-cosine and Private-Euclid take 3, 218 and 8, 078 [ms], respectively.

4.4 Security

The security of the proposed protocols are based on the security of the strong
RSA assumption, the difficulty of the decision Diffie-Hellman problem in the
random oracle model. The probability to forge the commitments in PKs can
be negligible as the security parameter increases. On the other hand, the com-
mon biometric feature has a less entropy than the commitment scheme. The
probability of malicious party to impersonate someone without his biometric
feature is fixed at a level determined by the entropy of the feature. Hence, the
zero-knowledge protocol is secure enough to apply the biometric authentication.

Our model makes an assumption of tamper-freeness of secure device that
stores the template feature vector with the random values used for commitment.
We consider the assumption is reasonable in practical perspective since many
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secure devices are widely used in our daily life, e.g., the RFID and the smart
cards. The requirement of secure device, however, is not useful from the usability
point of view.

5 Conclusions

We have studied the protocols for secure similarity evaluation of vectors, Private-
Cosine and Private-Euclid, based on the zero-knowledge proof of range. The
Private-Cosine allows a user to convince a server that the user has a secret
similar to the data stored at server in a sense of the cosine correlation, while
protocol Private-Euclid uses the Euclidean distance to evaluate similarity. The
latter archives better accuracy in terms of false acceptance and rejection than
the former, in the cost of computational overhead. Our schemes are designed for
secure remote biometric authentication that no malicious party including even
server administrator can reveal private biometric data.
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Abstract. In this paper we propose the concept of logically aggregated geo-
graphic suitability maps (S-maps). The goal of S-maps is to provide special-
ized maps of the suitability degree of a selected geographic region for a 
specific purpose. There is a wide spectrum of purposes which include suit-
ability for industrial development, agriculture, housing, education, recrea-
tion, etc. Our goals are to specify main concepts of S-maps development, 
and to identify some of the potential application areas. Our approach is 
based on soft computing with partial truth and graded logic functions within 
the framework of the LSP method. 

1   Introduction 

Traditional geographic maps are defined as the distribution of selected scalar indica-
tors in the two dimensional space. Such indicators include altitude, cities, roads, air-
ports, rivers, etc. However, each (X,Y) point has many other attributes that may be of 
interest for complex planning and decision making. Let the array of point attributes be 

),...,,( 21 naaa . Such attributes may characterize physical characteristics of terrain 

(slope, altitude, material, distance from major roads, distance from green areas, dis-
tance from lakes, etc.), available infrastructure (supply of water, supply of electrical 
energy, sewage system, telecommunications, transport systems, etc.), urban charac-
teristics (distance from major schools, shopping areas, entertainment, sport facilities, 
hospitals, the density of population, etc.), legal status (private property, governmental 
property, areas reserved for special activities), economic development (local indus-
tries, businesses, employability), pollution (air, water, noise), etc. All these attributes 
affect the overall suitability of a specific area for a selected type of use. In a general 
case the degree of suitability depends on a variety of logic conditions that evaluators 
specify using reasoning techniques that are typical for soft computing. 

The S-map is defined as a spatial distribution of the overall degree of suitability for 
a specific use. Typical examples of such use are construction of industrial objects, 
homes, hospitals, schools, recreation areas, entertainment centers, sport facilities, 
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shopping centers, airports, etc. In all cases decision makers are interested to evaluate 
and compare locations or regions from the standpoint of their suitability for a selected 
use. The degree of suitability E is a soft computing logical function of n attributes and 
we assume that its range is normalized: ]1,0[),...,,( 21 ∈= naaaGE . The value 0 

denotes an unsuitable location and the value 1 (or 100%) denotes the maximum level 
of suitability.  

Our concept is similar to the land-use suitability maps proposed in [10]. However, 
the land-use suitability maps are based on outranking methods and do not support 
flexible logic conditions that we consider fundamental for justifiable decision making. 
Similar to [10] and [2], our approach is a step towards dynamic generation of special-
ized maps based on multicriteria decision models. 

The predecessors of S-maps are composed using map algebra. Map algebra is a set 
based algebra for manipulating geographic data [15], or some of its generalizations 
(e.g. [1]) or extensions (e.g. with the temporal dimension [7], [12]). Notwithstanding 
that map algebra is recognized as one of the most dominant frameworks to handle 
GIS-based raster data [11], alternatives (e.g. [9] and [2]) have been proposed, all hav-
ing their pros and contras.  

While traditional maps are always produced having in mind the needs and inter-
est of specific users, there is a clear need for specialized composite indicators that 
can be dynamically generated in a flexible way from geographic databases to pro-
vide information necessary for advanced public and professional decision making 
related to urban planning, industrial development, corporate planning, etc. In par-
ticular, there is a need for soft computing suitability maps that show suitability 
indicators based on flexible suitability criteria that include sophisticated logic 
conditions. The purpose of this paper is to propose a method for designing such 
maps using the LSP method for evaluating suitability. We first present the concept 
of S-maps and a numerical case study of their application. Then we discuss the 
issues of providing accurate input data. 

2   Design of S-Maps 

The proposed technique for creating S-maps is summarized in Fig. 1. The investigated 
area is divided in an orthogonal grid of square cells of size h where X,Y denote the 
coordinates of the center of a specific cell. Each analyzed cell is characterized by an 
array of n cell attributes )).,(),...,,(),,(( 21 YXaYXaYXa n  The attributes are indica-

tors that affect the ability of the analyzed cell to support some desired activity. For 
simplicity, the array of attributes can be denoted ),...,,( 21 naaa , and we assume that 

each attribute is a function of coordinates X,Y. 
The array of attributes provides inputs for the quantitative evaluation process based 

on the LSP method [4,5]. After defining a complete and nonredundant list of input 
attributes, the next step in this process is to provide elementary attribute criteria for 
each component of the array of attributes. The elementary criteria are functions 

niRg i ,...,1],1,0[: =→ . The value ( )i i ie g a=  is called the attribute (or  
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elementary) preference. The attribute preference denotes the degree to which the 

value ia  satisfies a specific requirement that reflects the selected type of evaluation.  

The final step in the organization of the LSP criterion function is the development 
of the preference aggregation structure that logically aggregates all attribute prefer-
ences and generates the resulting overall preference that is the degree of suitability 

( , ) [0,1]E X Y ∈ . The aggregation process can include a variety of logic conditions 

that are modeled using the Generalized Conjunction/Disjunction function [6] and 
more complex compound aggregators [5]. A classification of fundamental aggregators 
in the Continuous Preference Logic (CPL) is shown in Table 1. 
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Fig. 1. The concept of S-maps 

The value ( , )E X Y  reflects the suitability of a given X,Y cell, and the distribution 

defined by min max min max( , ), ,E X Y X X X Y Y Y≤ ≤ ≤ ≤  represents the desired 

S-map. The average suitability of a region T can then be computed by averaging 
( , )E X Y  over the desired region: 

 

( , )
T

T

E X Y dXdY

E
dXdY

=
∫∫

∫∫
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Table 1. Classification of fundamental CPL aggregators [6] 

Full disjunction (D) 
Hard partial disjunction (HPD) 

Partial disjunction  Soft partial disjunction (SPD) 
Neutral aggregator Arithmetic mean (A) 

Soft partial conjunction (SPC) Partial disjunction 
Hard partial conjunction (HPC) 

Basic CPL  
Aggregator 

 
Generalized 
Conjunction/ 
Disjunction 

(GCD) Full conjunction (C) 
Disjunctive partial absorption (DPA) Simple partial  

absorption Conjunctive partial absorption (CPA) 
Sufficient/Desired/Optional (SDO) Nested partial  

absorption Mandatory/Desired/Optional (MDO) 

 
 
 
 

Aggregation 
Operators in 
Continuous  
Preference  

Logic  
 

Compound 
aggregators 

Partial equivalence, partial implication, etc. 

The mean suitability E  is a useful indicator only if the distribution ( , )E X Y  satis-

fies some acceptability criteria, primarily a sufficient smoothness and a low variabil-
ity. For example if ( , )E X Y  in a region T shows discontinuities and large variations, 

this can prevent some applications regardless the value of E  for T.  
It is important to note that S-maps can be dynamically generated from the data-

base of attributes. They are flexible because the formal logic and semantic parameters 
that evaluate the suitability of cells can be interactively modified and adjusted by the 
user. By modifying the parameters the user can generate a sequence of maps that 
answer a variety of “what-if” questions. These answers are the primary purpose of  
S-maps. 

3   Evaluation of Urban Expansion Suitability 

The suitability for urban expansion is one of frequent and complex evaluation prob-
lems. In this section we evaluate the degree of urban expansion suitability as a case 
study that illustrates our method. The first step in this direction is to develop a system 
attribute tree that includes all attributes that will be evaluated. A simplified tree with 
11 attributes is shown in Fig. 2.  

Some of the attributes are considered mandatory, i.e. if they are not satisfied then 
the overall suitability for urban expansion is considered unacceptable and rated zero. 
Mandatory attributes are in Fig. 2 denoted by (+). On the other hand, there are attrib-
utes that are in our example considered nonmandatory and denoted by (-). If a non-
mandatory requirement is not satisfied that will not cause rejection of the proposed 
location. For example, while appropriate slope and altitude are considered mandatory 
requirements, a good orientation of the new urban complex is considered desirable, 
but it is not mandatory. Similarly, good environment is highly desirable but not neces-
sary: if other conditions are satisfied new urban areas can be built in cases where 
green areas and lakes are missing. Finally, the proximity to an airport is also consid-
ered nonmandatory. However, good ground transportation is considered mandatory. 
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Fig. 2. System attribute tree with mandatory (+) and nonmandatory (-) components 

Mandatory and nonmandatory attributes are examples of logic conditions that are 
present in all areas of evaluation. Additional logic conditions include the adjustable 
levels of simultaneity (andness) and replaceability (orness) that some groups of attrib-
utes must satisfy. Finally, all attributes are assumed to have adjustable levels of rela-
tive importance. This is the reason why it is convenient to realize the evaluation 
model using the LSP method. 

The next step in the LSP method is to specify requirements for the above 11 at-
tributes. The requirements are specified as functions that show the level of satisfaction 
with each value of the attribute. The elementary attribute criteria are shown in Fig. 3. 
For example, the criterion #212 specifies that it is desired that an urban complex is 
located in proximity of a regional highway. More precisely, the proposed elementary 
criterion considers that an ideal distance from the regional highway is from 100 to 
200 meters. If the distance is greater than 2000 meters or less than 25 meters that is 
considered unacceptable.  

Elementary criteria are based on piecewise linear (polygonal) approximations of 
functions: we define a set of justifiable breakpoints and use linear interpolation be-
tween them. This approach yields a good combination of simplicity and accuracy. For 
example, we expect that the distance to the railroad station is less that 15 minutes and 
not greater than 30 minutes; if the distance is 20 minutes we use interpolation and the 
resulting degree of satisfaction of this requirement will be 66.7%. 

The aggregation of attribute preferences is presented in Fig. 4. Each circle has a 
reference number and denotes the weighted power mean aggregator 

1/
1 1( ... )r r r

out k ke W e W e= + + ; input lines denote weights 1,..., kW W , and exponents  

r  for aggregators A, C--, C-+, CA, and C+  are respectively 1,  0.619,  -0.148, -0.72, 

     1   Terrain and environment (+) 
11 Terrain properties  (+) 
     111 Slope (+) 
     112 Altitude (+) 

               113 Orientation of terrain  (-) 
12 Environment  (-) 

                    121 Proximity of forests or major green areas  (-) 
                    122 Proximity of a lake/river (-) 

 2   Location and accessibility  (+) 
21  Ground transportation (+) 

                211 Proximity of an interstate highway (+) 
                212 Proximity of a regional highway (+) 
                213 Proximity of an intercity railroad station  

22  Proximity of an international airport (-) 
 3   Population and employment opportunities (+) 

31  Density of population (+) 
          32  Proximity to employment opportunities (+) 
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and -3.51 [4]. The aggregation structure includes mostly conjunctive aggregators that 
reflect requirements for simultaneous satisfaction of requirements. Three aggregators 
(identified in Fig. 4 by block numbers 11, 1, and 2) are asymmetrical partial absorp-
tions that aggregate mandatory and desired inputs. If the desired input is 0, this causes 
a penalty (the average decrement of the output value) P, and if the desired input is 1, 
this causes a reward (the average increment of the output value) R. 
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Fig. 3. Elementary attribute criteria 
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In the case of asymmetrical partial absorption the parameters of aggregator (the 
weights and the andness of partial conjunction) can be computed from the desired pen-
alty/reward pairs. Therefore, the evaluator selects only the most appropriate levels of 
penalty and reward. In the case of other aggregators (generalized conjunction/disjunction 
[5], [6]) the evaluator selects weights that express the desired relative importance of 
inputs and the andness/orness that reflects the desired level of simultaneity or replaceabil-
ity of inputs. Another way to determine parameters is to use software tools that compute 
the parameters from a training set of desired input-output pairs. 
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Fig. 4. The aggregation of preferences and the computation of the overall suitability 

For simplicity, let us compare three locations: 1 1 1( , )L X Y= , 2 2 2( , )L X Y= ,  

and 3 3 3( , )L X Y= . These locations are selected as typical for three areas that are can-

didates for urban expansion. Their attributes are shown in Table 2. Because of differ-
ences in the available infrastructure, the cost of building in location 2L  is 30% more 

expensive than building in location 1L , and building in location 3L  is 20% more ex-

pensive then building in location 1L . The problem is to find which location is the 

most suitable for the urban expansion, and the basic results are shown in Table 3. 

Table 2. Input attributes and costs for the three competitive locations 

Loc 111 112 113 121 122 211 212 213 22 31 32 C 

1L  40 1200 2 3000 250 1500 50 20 100 555 30 1 

2L  18 400 1 150 500 1100 300 20 20 800 20 1.3 

3L  35 700 0 1600 700 1700 400 15 35 1500 35 1.2 

Table 3. Resulting suitability degrees [%] and cost/preference indicators 

Loc 10 11 12 21 1 2 3 E E/C 

1L  62.7 65.5 26.8 48.5 51.7 42.9 86 51.75 51.75 [72.5%] 

2L  100 94.4 92.4 88.6 93.8 89.8 95.5 92.83 71.41 [100%] 

3L  81.6 69.7 42 92 60.3 89.9 77.7 72.63 60.52 [84.8%] 
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The most suitable location is 2L  because it satisfies almost 93% of the suitability 

requirements. The location 3L  is second; it satisfies 73% of the requirements. The 

least suitable location is 1L ; it satisfies only 52% of the suitability requirements for 

urban expansion. If the importance of high suitability is the same as the importance of 
low cost then we can compare the locations using the E/C ratio, and in such a case the 
location 2L  is still the most convenient regardless the highest cost; the overall suit-

ability of 3L  is approximately 15% lower than the suitability of 2L . 

The presented example shows a suitability criterion that incorporates elementary 
attribute criteria and a number of logic conditions: adjustable andness and orness, 
adjustable relative importance, symmetric and asymmetric (mandatory/desired) logic 
conditions. Such criteria can be used for a variety of experiments with other decision 
requirements.  

4   Data Availability and Reliability Problems 

S-maps are based on assumption that accurate values are available for all attributes in 
the array )),(),...,,(),,(( 21 YXaYXaYXa n  and for each point ),( YX  in the analyzed 

region. There are applications where this assumption holds, but there are also real life 
applications where this is not the case. Information sources might be imperfect, con-
taining inaccurate, incomplete, or even inconsistent data. For some attributes, like 
distances from given map objects, we would be able to directly compute a reliable 
attribute value (on condition that the map is reliable). In a general case, however, we 
must be prepared to face situations where the necessary attribute values are not avail-
able. Several types of unavailability have been identified in [13], including the in-
completeness of data, the lack of sufficiently accurate data, and the nonexistent data. 

 

Handling the incompleteness of data. If an attribute value ),( YXa  for a given point 

),( YX  is missing, but values are available for relevant neighboring points that are 

close enough, then we might be able to derive an approximate value by aggregating 
the corresponding attribute values of these neighboring points. The problem of deriv-
ing a reliable value can thus be decomposed in three subproblems: search for relevant 
neighboring points, determine whether these are close enough or not, and interpolate 
the values. 

To search for relevant neighboring points, a Triangular Irregular Network (TIN) 
[14] is constructed with the points for which data is available as vertices. The well-
known Delaunay triangulation method [3] is used for this purpose. It is then straight-
forward to determine the triangle in which the point ),( YX  is located; the relevant 

neighboring points are the vertices of this triangle. After the triangle containing the 
point ),( YX  is identified the user must decide whether the accuracy of the applied 

interpolation method is satisfactory. This must be done in a general way and not for 
each point separately. In the case of unacceptable accuracy we consider data to be 
unknown. 
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In cases where we are interested in interpolation of geologic data it is convenient to 
use a family of nonlinear least squares estimation algorithms developed in geostatis-
tics, primarily various forms of kriging [8,16]. 

 

Handling the lack of sufficiently accurate data. In the case of unknown data we may 
apply one of the following three approaches: (1) Develop a modified suitability crite-
rion excluding unknown data, (2) Perform the analysis replacing the unknown value 
by a range of appropriate values or a distribution, and (3) Develop a method to mod-
ify the preference aggregation structure in an automatic way.  

 

The case of nonexistent data. Another potential type of unavailable data is the case 
where data is not available because it does not exist. This means that the correspond-
ing criterion is not applicable for the analyzed location. This is a sufficient indication 
that the existing suitability criterion must be redesigned. 

5   Conclusions 

S-maps are specialized geographic maps based on aggregating a number of attribute 
preferences that characterize the suitability of a geographic location for a specific use. 
Advantages of S-maps can be summarized as follows: 

• S-maps are general and flexible in the sense that they can express the suit-
ability of the analyzed geographic area for any specific use. 

• The method of generating S-maps offers a high level of logic versatility 
originating from the LSP-based soft computing approach. It is easily under-
standable and consistent with observable properties of human reasoning in 
the area of evaluation. 

• LSP models of suitability generate correct logic results in all points of the 
attribute space. The accuracy of such models cannot be reduced by unpre-
dictable variations of attribute values. Therefore, the expected reliability of 
S-maps is very good. 

• S-maps are dynamically generated from the database of attributes. 
• Users of S-maps can experiment with various suitability criteria and dy-

namically investigate effects of changing their parameters. 
• As versatile on-line tools, S-maps have potential of becoming an indispensable 

decision support means in many social, engineering, and business activities. 

S-maps create various opportunities for future work. The initial efforts should be 
focused on improving the availability and reliability of input attribute data. There is 
also space for improving methods for working with incomplete and imprecise attrib-
utes. Finally, it is also necessary to develop appropriate software infrastructure that 
will facilitate the routine creation and experimental use of S-maps. 
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Abstract. This paper deals with quasi-arithmetic means of an interval
through utility functions in decision making. The mean values are dis-
cussed from the viewpoint of aggregation operators, and they are given as
aggregated values of each point in the interval. We investigate the prop-
erties of the quasi-arithmetic mean and its translation invariance, and
next we demonstrate the decision maker’s attitude based on his utility
by the quasi-arithmetic mean and the aggregated mean ratio. The dual
quasi-arithmetic means are also discussed with dual aggregation opera-
tors. Finally, examples of the quasi-arithmetic means and the aggregated
mean ratio for various typical utility functions are given to understand
the motivation.

1 Introduction

In decision making, we often use mean values with utility functions as a cri-
terion ([7,8,16,17]). This paper deals with means of an interval through utility
functions. A mean value of an interval [a, b], where a and b are real numbers, is
given by the middle mean (a+ b)/2 of the both edges a and b in classical theory.
However, in decision making models like artificial intelligent, we need to esti-
mate data subjectively. How are means of an interval evaluated under decision
maker’s subjective utility? In this paper, we discuss means of an interval from the
viewpoint of aggregation operators. Kolmogorov [10] and Nagumo [12] studied
aggregation operators and verified under some assumptions that the aggregated
value of real numbers x1, x2, · · · , xn(xi ∈ [0, 1], i = 1, 2, · · · , n) is represented as

ξn(x1, x2, · · · , xn) = f−1

(
1
n

n∑
i=1

f(xi)

)
(1)

with a continuous strictly increasing function f : [0, 1] �→ [0, 1]. Starting from
this equation (1), we construct means of an interval step by step in Section
2. In this paper, we consider that the mean value is given by an aggregated
value of all points in the interval, and we call it a quasi-arithmetic mean. In
Sections 3 and 4, we investigate the properties of the quasi-arithmetic mean
and its translation invariance. Next, in Section 5, we introduce an aggregated
mean ratio of the quasi-arithmetic mean by an interior ratio on the interval,

V. Torra and Y. Narukawa (Eds.): MDAI 2008, LNAI 5285, pp. 26–37, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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and we demonstrate the correspondence among the quasi-arithmetic mean, the
aggregated mean ratio and the decision maker’s attitude based on his utility.
The decision maker’s attitudes, for example neutral, risk averse and risk loving,
are characterized by the quasi-arithmetic mean and the aggregated mean ratio
under necessary/sufficient conditions on utility functions. Further we investigate
the movement of the aggregated mean ratio in local/global regions. In Section
6, we also consider the quasi-arithmetic means induced from dual aggregation
operators, and we give their characterizations. Finally, in Section 7, we show
examples of the quasi-arithmetic means and the aggregated mean ratio with
various typical utility functions, and we give their relations with the classical
quasi-arithmetic means.

2 Aggregation Operators

We deal with quasi-arithmetic means of an interval induced from aggregation
operations from the viewpoint of subjective decision making. It is well-known
that the aggregation operation can be represented with a continuous increasing
function (Kolmogorov [10] and Nagumo [12]). In this paper, taking the contin-
uous increasing function as a utility function in decision making, we discuss the
decision-maker’s judgment by the mean based on utility. We analyze proper-
ties of the quasi-arithmetic mean. introducing a ratio concerning the mean on
the interval. First, we start from the notion of aggregation operations of several
variables on [0, 1]. Next, we construct a quasi-arithmetic means of an interval
step by step. Let n be a fixed natural number, and let ξn : [0, 1]n �→ [0, 1] be a
function. We represent it as ξn(x1, x2, · · · , xn) for (x1, x2, · · · , xn) ∈ [0, 1]n.

Definition 1 (n-ary aggregation operator [8]). A function ξn : [0, 1]n �→ [0, 1] is
called an n-ary aggregation operator if it satisfies the following conditions (A.i)
– (A.iii):

(A.i) ξn(x1, x2, · · · , xn) ≤ ξn(y1, y2, · · · , yn) if xi ≤ yi for all i = 1, 2, · · · , n.
(A.ii) ξn is continuous on [0, 1]n.
(A.iii) ξn(x1, x2, · · · , xn) = ξn(xi1 , xi2 , · · · , xin) if (i1, i2, · · · , in) = σ(1,

2, · · · , n), where σ is a permutation operator.

We can find another definition of n-ary aggregation in [2,3], which requires (A.1)
with boundary conditions and does not require (A.ii) and (A.iii). However, in
this paper we introduce the n-ary aggregation by Definition 1 to discuss quasi-
arithmetic means (5) with a continuous utility function f . The conditions (A.i),
(A.ii) and (A.iii) are called monotone, continuous and neutral respectively. For an
n-ary aggregation operator ξn, the following properties (A.iv), (A.v) and (A.vi)
are said to be idempotent, strictly monotone and decomposable respectively:

(A.iv) ξn(x, x, · · · , x) = x for all x ∈ [0, 1].
(A.v) ξn(x1, x2, · · · , xn) < ξn(y1, y2, · · · , yn) whenever xi ≤ yi for all i =

1, 2, · · · , n and xj < yj for some j = 1, 2, · · · , n.



28 Y. Yoshida

(A.vi) Put ξ1 := ξ1(x1) = x1, ξ2 := ξ2(x1, x2), ξ3 := ξ3(x1, x2, x3), · · · , ξn :=
ξn(x1, x2, · · · , xn). Then, for k = 1, 2, · · · , n it holds that

ξn(x1, · · · , xk, xk+1, · · · , xn) = ξn(ξk, · · · , ξk, xk+1, · · · , xn).

The following well-known result regarding the aggregation operations is given
by Kolmogorov [10] and Nagumo [12].

Lemma 1 ([10],[12]). An n-ary aggregation operator ξn : [0, 1]n �→ [0, 1] satisfies
(A.iv), (A.v) and (A.vi) if and only if there exists a continuous strictly increasing
function f : [0, 1] �→ [0, 1] such that

ξn(x1, x2, · · · , xn) = f−1

(
1
n

n∑
i=1

f(xi)

)
(2)

for (x1, x2, · · · , xn) ∈ [0, 1]n.

Definition 2 (aggregation operator [2,3]). A function ξ :
⋃

n≥1[0, 1]n �→ [0, 1]
is called an aggregation operator if it is given by n-ary aggregation operators ξn

such as ξ = ξn on [0, 1]n for each n = 1, 2, · · · .

In Lemma 1, we note for each n = 1, 2, · · · that when any continuous strictly
increasing function f : [0, 1] �→ [0, 1] is given, a function ξn which is described by
(2) satisfies (A.i) – (A.vi) and it is an n-ary aggregation operator. Therefore, in
this paper, first of all we fix a continuous strictly increasing function f : [0, 1] �→
[0, 1] as the decision maker’s utility, and we discuss an n-ary aggregation operator
ξn : [0, 1]n �→ [0, 1] defined by

ξ(x1, x2, · · · , xn) = ξn(x1, x2, · · · , xn) = f−1

(
1
n

n∑
i=1

f(xi)

)
(3)

for (x1, x2, · · · , xn) ∈ [0, 1]n and n = 1, 2, · · · . Then, we construct a quasi-
arithmetic means of an interval under subjective decision-making from the view-
point of an aggregation of all points in the interval. Let [a, b] be a closed interval
satisfying 0 ≤ a < b ≤ 1. Let {[ci−1, ci]|i = 1, 2, · · · , n} be a partition of the
interval [a, b] such that ci := a + i(b− a)/n for i = 0, 1, 2, · · · , n. Take a point xi

on the interval [ci−1, ci] such that xi ∈ [ci−1, ci] for each i = 1, 2, · · · , n. From
(3), we define a quasi-arithmetic mean on the interval [a, b] as follows

M([a, b]) = lim
n→∞ ξ(x1, x2, · · · , xn) = lim

n→∞ f−1

(
1
n

n∑
i=1

f(xi)

)
. (4)

Hence we can understand the mean (4) as the aggregated value of all points dis-
tributed uniformly on [a, b] through the utility function f since ξ(x1, x2, · · · , xn)
is an aggregated point of reference points xi on the small interval [ci−1, ci]
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(i = 1, 2, · · · , n) based on the aggregation operator defined by the utility function
f . By the definition of Riemann integral, we obtain

M([a, b]) = f−1

(
1

b − a

∫ b

a

f(x)dx

)
(5)

for [a, b](⊂ [0, 1]) such that 0 ≤ a < b ≤ 1. Hence, M([a, b]) represents a mean
value given by a real number c(∈ [a, b]) satisfying f(c) = 1

b−a

∫ b

a
f(x)dx in the

mean value theorem. Let D(⊂ (−∞,∞)) be an interval. Extending the domain
from the closed interval [0, 1] to D, in the next section we demonstrate the quasi-
arithmetic mean of closed subintervals of D in the form (5) for [a, b] ⊂ D (a < b),
where f : D �→ (−∞,∞) is a continuous strictly increasing function for utility.

3 Quasi-arithmetic Means

Let R := (−∞,∞) be the set of all real numbers. For two bounded closed in-
tervals [a, b] and [c, d], we give a partial order 
 concerning intervals as follows:
[a, b] 
 [c, d] ⇐⇒ a ≤ c and b ≤ d. Let D be a fixed interval which is not a sin-
gleton and we call it a domain. Let I(D) be the set of all nonempty subintervals
of D and let C(D) be the set of all nonempty bounded closed subintervals of D.
Let f : D �→ R be a continuous strictly increasing function for utility. Define a
map M : C(D) �→ D by

M([a, b]) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f−1
(

1
b−a

∫ b

a
f(x)dx

)
if a < b

limc↓a f−1
(

1
c−a

∫ c

a f(x)dx
)

if a = b < sup D

limc↑b f−1
(

1
b−c

∫ b

c
f(x)dx

)
if a = b = sup D

(6)

for [a, b] ∈ C(D).

Lemma 2. A quasi-arithmetic mean M : C(D) �→ D defined by (6) has the
following properties (M.i) – (M.iii):

(M.i) Let [a, b] ∈ C(D). Then it holds that a ≤ M([a, b]) ≤ b. Especially,
M([a, a]) = a for a ∈ D.

(M.ii) Let [a, b], [c, d] ∈ C(D) such that [a, b] 
 [c, d]. Then M([a, b]) ≤ M([c, d]).
(M.iii) The map M : C(D) �→ D is continuous, i.e. it holds that

lim
n→∞M([an, bn]) = M([a, b])

for [a, b] ∈ C(D) and [an, bn] ∈ C(D)(n = 1, 2, · · · ) such that limn→∞ an = a
and limn→∞ bn = b.

Remark 1. We note the quasi-arithmetic mean (6) also has the following prop-
erties as an evaluation of intervals.

(i) The properties (M.i) – (M.iii) in Lemma 2 are corresponding to the properties
of compensative, monotone and continuous respectively.
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(ii) In Lemma 2, we may take a continuous strictly decreasing function when
we deal with a regret function instead of the utility function f . Then, the
corresponding mean is reduced to the one with a strictly decreasing func-
tion. Actually we see the following. Let g : D �→ R be a continuous strictly
decreasing function. Define a map Mg : C(D) �→ D by

Mg([a, b]) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g−1
(

1
b−a

∫ b

a g(x)dx
)

if a < b

limc↓a g−1
(

1
c−a

∫ c

a
g(x)dx

)
if a = b < sup D

limc↑b g−1
(

1
b−c

∫ b

c
g(x)dx

)
if a = b = sup D

for [a, b] ∈ C(D). Then, setting a continuous strictly increasing function
f := −g : D �→ R, we obtain g−1(x) = f−1(−x) and Mg([a, b]) = Mf ([a, b])
or [a, b] ∈ C(D) such that a < b. This is the same one as (6).

Finally we can extend the quasi-arithmetic mean (6) of a closed interval to
be applicable for a general interval. For intervals (a, b], [a, b), (a, b) ∈ I(D), we
extend the mean M by

M((a, b]) := lim
c↓a

M([c, b]) if (a, b] ∈ I(D),

M([a, b)) := lim
c↑b

M([a, c]) if [a, b) ∈ I(D),

M((a, b)) := lim
c↓a

lim
d↑b

M([c, d]) if (a, b) ∈ I(D).

Then, from the definition we have M((a, b]) = M([a, b]) and M((a, b)) = M([a, b))
if a �= inf D, and M([a, b)) = M([a, b]) and M((a, b)) = M((a, b]) if b �= sup D.
We can extend the mean M regarding the ends of D in similar ways.

4 The Quasi-arithmetic Means and Translation
Invariance

In this section, we discuss translation invariance of the quasi-arithmetic means.
Let D be a fixed domain and let f : D �→ R be a continuous strictly increasing
function for utility. Let M : C(D) �→ D be the mean given by (6).

Lemma 3. The following conditions (a) – (c) are equivalent:

(a) r · M([a, b]) + s = M([ra + s, rb + s]) for all [a, b] ∈ C(D), r, s ∈ R (r > 0).
(b) M([a, b]) + M([c, d]) = M([a + c, b + d]) for all [a, b], [c, d] ∈ C(D).
(c) There exists a constant θ∗ ∈ [0, 1] such that

M([a, b]) = a + θ∗(b − a) for all [a, b] ∈ C(D). (7)

Now, to represent Lemma 4(i) explicitly, we introduce the following notations.
For an interval I(⊂ R) and a function h : I �→ R, we define h(I) := {h(x) | x ∈
I}. If I = [a, b] ∈ C(D) and h is a continuous strictly increasing function, then
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it holds that h([a, b]) = {h(x) | x ∈ [a, b]} =
[
minx∈[a,b] h(x), maxx∈[a,b] h(x)

]
=

[h(a), h(b)]. Let a semi-linear strictly increasing function ϕ : R �→ R by ϕ(x) :=
rx + s (x ∈ R) for r, s ∈ R such that r > 0. Then Lemma 4(i) implies
ϕ(M([a, b])) = M([ϕ(a), ϕ(b)]) = M(ϕ([a, b])) for [a, b] ∈ C(D). Therefore, using
this notations, Lemma 4(i) asserts that the mean M is invariant for a semi-linear
strictly increasing translation ϕ. Namely,

ϕ ◦ M = M ◦ ϕ,

where ◦ is the composition of maps.

Remark 2. Regarding (7) of Lemma 3, we find θ∗ = 1/2 in Corollary 2 of the
next section. Therefore, (7) follows

M([a, b]) =
a + b

2
for all [a, b] ∈ C(D). (8)

The following lemma characterizes the translation invariance properties. General
translation invariance is also discussed by [11,13].

Lemma 4 (translation-invariance). The following (i) – (iv) hold.

(i) Put a function f(x) = cx+ d on a domain D = (−∞,∞) with constants c, d
such that c > 0. Then,

r · M([a, b]) + s = M([ra + s, rb + s])

for [a, b] ⊂ (−∞,∞), r, s ∈ R such that r > 0.
(ii) Let a domain D = [0,∞). Put a function f(x) = xγ on D with a positive

constant γ. Then,
r · M([a, b]) = M([ra, rb])

for [a, b] ⊂ [0,∞), r ∈ R such that r > 0.
(iii) Let a domain D = (0,∞). Put a function f(x) = γ log x on D with a positive

constant γ. Then,
r · M([a, b]) = M([ra, rb])

for [a, b] ⊂ (0,∞), r ∈ R such that r > 0.
(iv) Let a domain D = (−∞,∞). Put a function f(x) = eγx on D with a positive

constant γ. Then,

M([a, b]) + s = M([a + s, b + s])

for [a, b] ⊂ (−∞,∞), s ∈ R.

5 Aggregated Mean Ratios of the Quasi-arithmetic
Means

In this section, we introduce an aggregated mean ratios of the quasi-arithmetic
mean and we discuss the correspondence among the quasi-arithmetic mean, the
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aggregated mean ratio and the decision maker’s attitude based on his utility.
Let D be a fixed domain and let f : D �→ R be a continuous strictly increasing
function for utility. Let M : C(D) �→ D be the mean given by (6). Taking the
continuous strictly increasing function f as a utility function in decision making,
we discuss the decision-maker’s judgment by the quasi-arithmetic mean based
on utility. Fix an interval [a, b] ∈ C(D) such that a < b. Define an interior ratio
θ(a, b) induced from a position of the quasi-arithmetic mean M([a, b]) on the
interval [a, b] by

θ(a, b) :=
M([a, b]) − a

b − a
. (9)

We call it an aggregated mean ratio under the subjective utility f . It is trivial
from (M.i) that 0 ≤ θ(a, b) ≤ 1. In this section, we investigate properties of the
ratio θ and we discuss movement of the ratio θ(a, b) with respect to parameters
a, b of an interval [a, b] in local regions and global regions. Dujmović [4,5,6]
studied a conjunction/disjunction degree, which is a similar type of ratio to (9)
in the power case, for computer science. This paper discusses characterizations
from the viewpoint of economics. Let g : D �→ R be another continuous strictly
increasing function, and let N : C(D) �→ D be the mean defined by g instead of
f in the way of (6):

N([a, b]) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g−1
(

1
b−a

∫ b

a g(x)dx
)

if a < b

limc↓a g−1
(

1
c−a

∫ c

a g(x)dx
)

if a = b < sup D

limc↑b g−1
(

1
b−c

∫ b

c
g(x)dx

)
if a = b = sup D

(10)

for [a, b] ∈ C(D). We also put the aggregated mean ratio η for the mean N :

η(a, b) :=
N([a, b]) − a

b − a
(11)

for [a, b] ∈ C(D) such that a < b.

Theorem 1. Assume that f and g are C2-class functions on D. Let [a, b] ∈ C(D)
such that a < b. Then the following (i) – (iii) hold.

(i) If f and g satisfy f ′′/f ′ < g′′/g′ on (a, b), then M([a, b]) < N([a, b]) and
θ(a, b) < η(a, b).

(ii) If f and g satisfy f ′′/f ′ ≤ g′′/g′ on (a, b), then M([a, b]) ≤ N([a, b]) and
θ(a, b) ≤ η(a, b).

(iii) If f is semi-linear, i.e. f(x) = rx + s with r, s ∈ R such that r > 0, then
M([a, b]) = (a + b)/2 and θ(a, b) = 1/2.

Corollary 1. Assume that f is a C2-class function on D. Let [a, b] ∈ C(D)
such that a < b. Then the following (i) – (iv) hold.

(i) If f satisfies f ′′ < 0 on (a, b), then θ(a, b) < 1/2.
(ii) If f satisfies f ′′ ≤ 0 on (a, b), then θ(a, b) ≤ 1/2.
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(iii) If f satisfies f ′′ > 0 on (a, b), then θ(a, b) > 1/2.
(iv) If f satisfies f ′′ ≥ 0 on (a, b), then θ(a, b) ≥ 1/2.

Remark 3. In Corollary 1, f ′′ = 0 implies the decision maker’s neutral attitude,
f ′′ < 0 corresponds to the decision maker’s risk averse attitude, and f ′′ > 0 is
the decision maker’s risk loving attitude. Therefore, when we may choose two
functions f and g as decision maker’s utilities, Theorem 1 implies that the utility
f yields more risk averse results than g if f ′′/f ′ ≤ g′′/g′ on (a, b). Thus, the
inequality θ(a, b) ≤ η(a, b) means that the aggregated mean ratio θ(a, b) is more
risk averse than η(a, b). The index −f ′′/f ′ is called the Arrow-Pratt absolute risk
aversion in economics ([1,14]).

Kolesárová [9] studied relations between M([a, b]) and f in the power cases. The
following Theorem 2 and Corollary 2 show equivalences regarding the assertion
‘if - then’ in Theorem 1(ii) and Corollary 1(ii).

Theorem 2. Assume that f and g are C2-class functions on D. Let [a, b] ∈ C(D)
such that a < b. Then the following (a) – (c) are equivalent.

(a) f ′′/f ′ ≤ g′′/g′ on (a, b).
(b) M([c, d]) ≤ N([c, d]) for all [c, d] satisfying [c, d] ⊂ [a, b] and c < d.
(c) θ(c, d) ≤ η(c, d) for all [c, d] satisfying [c, d] ⊂ [a, b] and c < d.

Corollary 2. Assume that f is a C2-class function on D. Let [a, b] ∈ C(D)
such that a < b. Then the following (a) – (c) are equivalent.

(a) f ′′ ≤ 0 on (a, b).
(b) M([c, d]) ≤ (c + d)/2 for all [c, d] satisfying [c, d] ⊂ [a, b] and c < d.
(c) θ(c, d) ≤ 1/2 for all [c, d] satisfying [c, d] ⊂ [a, b] and c < d.

In Theorem 1, we let a middle utility h := (f + g)/2. Let L : C(D) �→ D be
the mean which is defined by h instead of f in the way of (6), and let ζ be the
aggregated mean ratio for the mean L. Then, the following result implies that
the estimation by the middle utility h = (f + g)/2 gives a middle attitude by
utilities f and g in decision making.

Corollary 3. Assume that f and g are C2-class functions on D. Let [a, b] ∈
C(D) such that a < b. Then the following (i) and (ii) hold.

(i) If f and g satisfy f ′′/f ′ < g′′/g′ on (a, b), then M([a, b]) < L([a, b]) <
N([a, b]) and θ(a, b) < ζ(a, b) < η(a, b).

(ii) If f and g satisfy f ′′/f ′ ≤ g′′/g′ on (a, b), then M([a, b]) ≤ L([a, b]) ≤
N([a, b]) and θ(a, b) ≤ ζ(a, b) ≤ η(a, b).

The following theorem gives a local property of the ratio θf (a, b) at the neigh-
borhood of b = a.

Theorem 3. Assume that f is a C2-class function on D. Then, it holds that

lim
b↓a

θ(a, b) =
1
2

(a ∈ D) and lim
a↑b

θ(a, b) =
1
2

(b ∈ D). (12)
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In the following corollary, we find the ratio θ∗ in Lemma 3(iii) must be θ∗ = 1/2
owing to Theorem 3.

Corollary 4. Assume that f is a C2-class function on D. If M satisfies

r · M([a, b]) + s = M([ra + s, rb + s])

for [a, b] ∈ C(D) and r, s ∈ R such that r > 0, then it holds that

M([a, b]) =
a + b

2
for all [a, b] ∈ C(D).

Remark 4. Let f : D �→ R be a continuous strictly increasing function. We
have discussed the quasi-arithmetic mean M defined by

M([a, b]) = f−1

(
1

b − a

∫ b

a

f(x)dx

)
(13)

for [a, b] ∈ C(D) (a < b). The mean value criterion M([a, b]) is different from
the following criterion m([a, b]) defined by a weighted sum of the both edges a
and b since M([a, b]) is given as the aggregated value of all points distributed
uniformly on [a, b]:

m([a, b]) := λa + (1 − λ)b (14)

for [a, b] ∈ C(D) (a < b), where λ is a constant λ ∈ [0, 1]. Actually, when we
deal with the form (13), Corollary 2 shows that we cannot choose λ such that
λ �= 1/2. This paper insists that the quasi-arithmetic means must be defined by
every points in the interval not only the edges of the interval.

6 Dual Quasi-arithmetic Means

We discuss quasi-arithmetic means induced from a dual aggregation operator,
which is used to aggregate opinions in groups. For example, we can obtain a
weak agreement against a strong agreement when we use the dual aggregation
operator in group opinions instead of the original aggregation operator (Fodor
and Roubens [8]).

Definition 3 (The dual aggregation [2,3]). For an n-ary aggregation operator
ξn : [0, 1]n �→ [0, 1], the dual aggregation operator ξd : [0, 1]n �→ [0, 1] is given by

ξd(x1, x2, · · · , xn) := 1 − ξn(1 − x1, 1 − x2, · · · , 1 − xn) (15)

for (x1, x2, · · · , xn) ∈ [0, 1]n.

We can deal with a more general dual aggregation operator ξd with any fixed
κ ∈ R instead of 1 in (15). Now we introduce a quasi-arithmetic mean induced
from the dual aggregation operator. Let [a, b] ∈ C(D) such that a < b. Let
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f : D �→ R be a continuous strictly increasing function for utility. Put a quasi-
arithmetic mean M : C(D) �→ D by (6):

M([a, b]) = f−1

(
1

b − a

∫ b

a

f(x)dx

)
.

Fix any κ ∈ R. Let a semi-linear strictly decreasing function ϕ : R �→ R by
ϕ(x) := κ − x (x ∈ R). Then the mean induced from the translation ϕ is called
the quasi-arithmetic mean Md, and it is given by

Md([a, b]) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(f ◦ ϕ)−1
(

1
b−a

∫ b

a
(f ◦ ϕ)(x)dx

)
if a < b

limc↓a(f ◦ ϕ)−1
(

1
c−a

∫ c

a (f ◦ ϕ)(x)dx
)

if a = b < sup D

limc↑b(f ◦ ϕ)−1
(

1
b−c

∫ b

c
(f ◦ ϕ)(x)dx

)
if a = b = sup D

(16)

for [a, b] ∈ C(D), where ◦ is the composition of maps.

Lemma 5. A dual quasi-arithmetic mean Md : C(D) �→ D defined by (16) has
the following properties (M.i) – (M.iv):

(M.i) Let [a, b] ∈ C(D) such that a < b. Then it holds that Md([a, b]) = κ −
M([κ − b, κ − a]) and

θd(a, b) = 1 − θ(κ − b, κ − a),

where θ and θd are the aggregated mean ratios, which are defined by (9),
corresponding to M and Md respectively.

(M.ii) Let [a, b] ∈ C(D). Then it holds that a ≤ Md([a, b]) ≤ b. Especially,
Md([a, a]) = a for a ∈ D.

(M.iii) Let [a, b], [c, d] ∈ C(D) satisfy[a, b] 
 [c, d]. Then Md([a, b]) ≤ Md([c, d]).
(M.iv) The map Md : C(D) �→ D is continuous, i.e. it holds that

lim
n→∞Md([an, bn]) = Md([a, b])

for [a, b] ∈ C(D) and [an, bn] ∈ C(D)(n = 1, 2, · · · ) such that limn→∞ an = a
and limn→∞ bn = b.

Corollary 5. Assume that f and g are C2-class functions on D. Let N be the
mean which is defined by g instead of f in the way of (6). Let Md and Nd be the
dual quasi-arithmetic means of M and N respectively, and let θd and ηd be their
aggregated mean ratios respectively. Let [a, b] ∈ C(D) such that a < b. Then the
following (i) and (ii) hold.

(i) If f and g satisfy f ′′/f ′ < g′′/g′ on (a, b), then Md([a, b]) > Nd([a, b]) and
θd(a, b) > ηd(a, b).

(ii) If f and g satisfy f ′′/f ′ ≤ g′′/g′ on (a, b), then Md([a, b]) ≥ Nd([a, b]) and
θd(a, b) ≥ ηd(a, b).
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7 Examples

In this section, we give examples for the previous sections. The following example
shows the local property of utility functions in comparison of the decision maker’s
two attitudes f and g which are corresponding to the aggregated mean ratios.

Example 1. Take convex utility functions f(x) = ex and g(x) = x2 on D =
(0,∞). Then we have

f ′′(x)
f ′(x)

= 1 � 1
x

=
g′′(x)
g′(x)

⇐⇒ x � 1

for x ∈ D. From Theorem 1, we obtain θ(a, b) < η(a, b) for [a, b] ⊂ (0, 1] such
that a < b and we also obtain θ(a, b) > η(a, b) for [a, b] ⊂ [1,∞) such that
a < b, where θ(a, b) is the aggregated mean ratio given by f(x) and η(a, b) is the
aggregated mean ratio given by g(x). This shows that f(x) is more risk averse
than g(x) in the region (0, 1) and that f(x) is more risk loving than g(x) in the
region [1,∞).

Next we investigate the results in the previous sections for the typical quasi-
arithmetic means.

Example 2. Take a function f(x) = xγ on D = (0,∞) with a constant γ such
that γ �= −1, 0. Then, for [a, b] ⊂ D such that a < b, the quasi-arithmetic mean
is given by the following Mγ([a, b]):

Mγ([a, b]) :=
(

bγ+1 − aγ+1

(γ + 1)(b − a)

)1/γ

,

and Corollary 1 implies that its aggregated mean ratio satisfies

θ(a, b) � 1
2

if γ � 1.

From Theorem 3, limb↓a θ(a, b) = lima↑b θ(a, b) = 1/2 holds, and we obtain

lim
a↓0

θ(a, b) = lim
b→∞

θ(a, b) =
(

1
γ + 1

)1/γ

.

Hence, the quasi-arithmetic means for γ are as follows:

M2([a, b]) =
(

a2 + ab + b2

3

)1/2

for γ = 2,

M1([a, b]) =
a + b

2
for γ = 1,

lim
γ→0

Mγ([a, b]) = exp
(

b log b − a log a

b − a
− 1
)

as γ → 0,
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lim
γ→−1

Mγ([a, b]) =
b − a

log b − log a
as γ → −1,

lim
γ→∞Mγ([a, b]) = b as γ → ∞,

lim
γ→−∞Mγ([a, b]) = a as γ → −∞.
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Abstract. The Reference Point Method (RPM) is an interactive tech-
nique formalizing the so-called quasi-satisficing approach to multiple cri-
teria optimization. The DM’s preferences are there specified in terms of
reference (target) levels for several criteria. The reference levels are fur-
ther used to build the scalarizing achievement function which generates
an efficient solution when optimized. Typical RPM scalarizing functions
are based on the augmented min-max aggregation where the worst indi-
vidual achievement minimization process is additionally regularized with
the average achievement. The regularization by the average achievement
is easily implementable but it may disturb the basic min-max model.
We show that the OWA regularization allows one to overcome this flaw
since taking into account differences among all ordered achievement val-
ues. Further, allowing to define importance weights we introduce the
WOWA enhanced RPM. Both the theoretical and implementation issues
of the WOWA enhanced method are analyzed. Linear Programming im-
plementation model is developed and proven.

1 Introduction

Consider a decision problem defined as an optimization problem with m criteria
(objective functions). In this paper, without loss of generality, it is assumed that
all the criteria are minimized. Hence, we consider the following Multiple Criteria
Optimization (MCO) problem:

min { (f1(x), . . . , fm(x)) : x ∈ Q } (1)

where x denotes a vector of decision variables to be selected within the feasible
set Q ⊂ Rn, and f(x) = (f1(x), f2(x), . . . , fm(x)) is a vector function that maps
the feasible set Q into the criterion space Rm. Note that neither any specific
form of the feasible set Q is assumed nor any special form of criteria fi(x) is
required. We refer to the elements of the criterion space as outcome vectors. An
outcome vector y is attainable if it expresses outcomes of a feasible solution, i.e.
y = f(x) for some x ∈ Q.
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Model (1) only specifies that we are interested in minimization of all objec-
tive functions fi for i ∈ I = {1, 2, . . . , m}. Thus it allows only to identify (to
eliminate) obviously inefficient solutions leading to dominated outcome vectors,
while still leaving the entire efficient set to look for a satisfactory compromise
solution. In order to make the multiple criteria model operational for the de-
cision support process, one needs assume some solution concept well adjusted
to the DM preferences. This can be achieved with the so-called quasi-satisficing
approach to multiple criteria decision problems. The best formalization of the
quasi-satisficing approach to multiple criteria optimization was proposed and de-
veloped mainly by Wierzbicki [15] as the Reference Point Method (RPM). The
reference point method was later extended to permit additional information
from the DM and, eventually, led to efficient implementations of the so-called
Aspiration/Reservation Based Decision Support (ARBDS) approach with many
successful applications [2,16].

The RPM is an interactive technique. The basic concept of the interactive
scheme is as follows. The DM specifies requirements in terms of reference levels,
i.e., by introducing reference (target) values for several individual outcomes. The
reference levels are used to build the scalarizing achievement function which
generates an efficient solution when minimized. The computed efficient solution
is presented to the DM as the current solution allowing comparison with previous
solutions and modifications of the aspiration levels if necessary. In building the
function it is assumed that the DM prefers outcomes that satisfy all the reference
levels to any outcome that does not reach one or more of the reference levels.

The scalarizing achievement function can be viewed as two-stage transforma-
tion of the original outcomes. First, the strictly monotonic partial achievement
functions are built to measure individual performance with respect to given
reference levels. Having all the outcomes transformed into a uniform scale of in-
dividual achievements they are aggregated at the second stage to form a unique
scalarization. The RPM is based on the so-called augmented (or regularized)
min-max aggregation. Thus, the worst individual achievement is essentially min-
imized but the optimization process is additionally regularized with the term
representing the average achievement. The min-max aggregation is crucial for
allowing the RPM to generate all efficient solutions even for nonconvex (and
particularly discrete) problems. On the other hand, the regularization is neces-
sary to guarantee that only efficient solution are generated. The regularization
by the average achievement is easily implementable but it may disturb the basic
min-max model. Actually, the only consequent regularization of the min-max
aggregation is the lex-min order or more practical the OWA aggregation with
monotonic weights. The latter combines all the partial achievements allocating
the largest weight to the worst achievement, the second largest weight to the sec-
ond worst achievement, the third largest weight to the third worst achievement,
and so on. The recent progress in optimization methods for ordered averages
[8,11] allows one to implement the OWA RPM quite effectively. Further, follow-
ing the concept of Weighted OWA [13,14] the importance weighting of several
achievements may be incorporated into the RPM. Such a WOWA enhancement
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of the ARBDS uses importance weights to affect achievement importance by
rescaling accordingly its measure within the distribution of achievements rather
than straightforward rescaling of achievement values against those defined by
the reference levels [12].

The paper is organized as follows. In the next section we formalize the scalar-
ization achievement functions of the RPM with the detailed formulas for the
ARBDS technique. In Section 3 we introduce the OWA and WOWA extensions
of the RPM. We show that the WOWA enhanced RPM always generates an
efficient solution to the original MCO problem complying simultaneously with
the ARBDS preference model assumptions. Further, in Section 4 we develop and
prove the Linear Programming implementation model for the method.

2 Scalarizations of the RPM

In the RPM method, depending on the specified reference levels, a special scalar-
izing achievement function is built which, when minimized, generates an efficient
solution to the problem. While building the scalarizing achievement function the
following properties of the preference model are assumed. First of all, each so-
lution generated by the scalarizing function optimization must be an efficient
solution of the original MCO problem. To meet this requirement the function
must be strictly increasing with respect to each outcome. Second, a solution
with all individual outcomes satisfying the corresponding reference levels is pre-
ferred to any solution with at least one individual outcome worse (greater) than
its reference level. That means, the scalarizing achievement function minimiza-
tion must enforce reaching the reference levels prior to further improving of
criteria. Thus, similar to the goal programming approaches, the reference levels
are treated as the targets but following the quasi-satisficing approach they are
interpreted consistently with basic concepts of efficiency in the sense that the
optimization is continued even when the target point has been reached already.

The generic scalarizing achievement function takes the following form [15]:

S(a) = max
1≤i≤m

{ai} +
ε

m

m∑
i=1

ai (2)

where ε is an arbitrary small positive number and ai = si(fi(x)), for i =
1, 2, . . . , m, are the partial achievement measuring actual performances of the
individual outcomes with partial achievement functions si : R → R with respect
to the corresponding reference levels. Let a = (a1, a2, . . . , am) represent the
achievement vector. The scalarizing achievement function (2) is, essentially, de-
fined by the worst partial (individual) achievement but additionally regularized
with the sum of all partial achievements. The regularization term is introduced
only to guarantee the solution efficiency in the case when the minimization of
the main term (the worst partial achievement) results in a non-unique optimal
solution. Due to combining two terms with arbitrarily small parameter ε, for-
mula (2) is easily implementable and it provides a direct interpretation of the
scalarizing achievement function as expressing (dis)utility.
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Various functions si provide a wide modeling environment for measuring par-
tial achievements [16]. The basic RPM model is based on a single vector of the
reference levels, the aspiration vector ra and the piecewise linear functions si.
Real-life applications of the RPM methodology usually deal with more complex
partial achievement functions defined with more than one reference point [1,16]
which enriches the preference models and simplifies the interactive analysis. In
particular, the ARBDS models taking advantages of two reference vectors: vec-
tor of aspiration levels ra and vector of reservation levels rr [2] are used, thus
allowing the DM to specify requirements by introducing acceptable and required
values for several outcomes. The partial achievement function si can be inter-
preted then as a measure of the DM’s satisfaction with the current value of
outcome of the ith criterion. It is a strictly increasing function of outcome with
value ai = 0 if fi(x) = ra

i , and ai = 1 for fi(x) = rr
i . Thus the partial achieve-

ment functions map the outcomes values onto a normalized scale of the DM’s
satisfaction. Various functions can be built meeting those requirements [16]. The
simplest for implementation is convex piece-wise linear partial achievement func-
tion introduced in the ARBDS system for the multiple criteria transshipment
problems with facility location [7]:

ai = si(fi(x)) =

⎧⎨
⎩

α(fi(x) − ra
i )/(rr

i − ra
i ), fi(x) ≤ ra

i

(fi(x) − ra
i )/(rr

i − ra
i ), ra

i < fi(x) < rr
i

γ(fi(x) − rr
i )/(rr

i − ra
i ) + 1, fi(x) ≥ rr

i

(3)

where α and γ are arbitrarily defined parameters satisfying 0 < α < 1 < γ.
Parameter α represents additional increase of the DM’s satisfaction (negative
dissatisfaction values) when a criterion generates outcomes better than the cor-
responding aspiration level. On the other hand, parameter γ > 1 represents
dissatisfaction connected with outcomes worse than the reservation level.

When accepting the loss of a direct utility interpretation, one may consider
more powerful lexicographic preference modeling [4,5] based on linear partial
achievement ai = (fi(x) − ra

i )/(rr
i − ra

i ) but splitted into separate preemptive
multilevel interval achievement measures: the reservation level underachievement
ar

i , the aspiration level underachievement aa
i and the aspiration level overachieve-

ment ao
i defined by the following formula:

ar
i = sr

i (fi(x)) = (fi(x) − rr
i )+/(rr

i − ra
i ) ∀ i ∈ I

aa
i = sa

i (fi(x)) = min{(fi(x) − ra
i )+/(rr

i − ra
i ), 1} ∀ i ∈ I

ao
i = so

i (fi(x)) = (ra
i − fi(x))+/(rr

i − ra
i ) ∀ i ∈ I

(4)

Minimization of the scalarizing achievement function (2)–(3) is then replaced
with the lexicographic optimization of the multilevel aggregations:

lexmin
x

{(S(ar), S(aa), S(−ao)) : Eq. (4), x ∈ Q} (5)

Note that instead of (4), the interval achievements may be defined with the goal
programming modeling techniques [6]:

fi(x)/(rr
i − ra

i ) + ao
i − aa

i − ar
i = ra

i , ao
i ≥ 0, 0 ≤ aa

i ≤ 1, ar
i ≥ 0 ∀ i ∈ I (6)
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3 WOWA Extension of the RPM

The crucial properties of the RPM are related to the min-max aggregation of
partial achievements while the regularization is only introduced to guarantee the
aggregation monotonicity. Unfortunately, the distribution of achievements may
make the min-max criterion partially passive when one specific achievement is
relatively very small for all the solutions. Minimization of the worst achievement
may then leave all other achievements unoptimized. Nevertheless, the selection
is then made according to linear aggregation of the regularization term instead
of the min-max aggregation, thus destroying the preference model of the RPM.
This can be illustrated with an example of a simple discrete problem of 7 alter-
native feasible solutions to be selected according to 6 criteria. Table 1 presents
six partial achievements for all the solutions where all the outcome values were
within the corresponding intervals between the aspiration and the reservation
levels. Thus the partial achievements may be viewed as aa

i defined according to
formula (4) (with ar

r = 0 and ao
i = 0) as well as the ai defined according to

formula (3). All the solutions are efficient. Solutions S1 to S5 reach the aspira-
tion levels (achievement values 0.0) for four of the first five criteria while being
quite far from one of them and the aspiration level for the sixth criterion as well
(achievement values 0.9). Solution S6 is close to the aspiration levels (achieve-
ment values 0.2) for the first five criteria while being far only to the aspiration
level for the sixth criterion (achievement values 0.9). All the solutions generate
the same worst achievement value 0.9. Therefore, while using the standard aug-
mented min-max aggregation (2) the final selection of a solution depends on the
total achievement (regularization term). Actually, one of solutions S1 to S5 will
be selected as better than S6.

In order to avoid inconsistencies caused by the regularization in the aggre-
gation (2), the min-max solution may be regularized according to the ordered
averaging rules [17]. This is mathematically formalized as follows. Within the
space of achievement vectors we introduce map Θ = (θ1, θ2, . . . , θm) which
orders the coordinates of achievements vectors in a nonincreasing order, i.e.,
Θ(a1, . . . , am) = (θ1(a), . . . , θm(a)) iff there exists a permutation τ such that
θi(a) = aτ(i) for all i and θ1(a) ≥ θ2(a) ≥ . . . ≥ θm(a). The standard min-max
aggregation depends on minimization of θ1(a) and it ignores values of θi(a) for
i ≥ 2. In order to take into account all the achievement values, one needs to
maximize the weighted combination of the ordered achievements thus represent-
ing the so-called Ordered Weighted Averaging (OWA) aggregation [17]. Note
that the weights are then assigned to the specific positions within the ordered
achievements rather than to the partial achievements themselves. With the OWA
aggregation one gets the following RPM model:

min
x

{
m∑

i=1

wiθi(a) : ai = si(fi(x)) ∀ i, x ∈ Q } (7)

where w1 > w2 > . . . > wm are positive and strictly decreasing weights. Ac-
tually, they should be significantly decreasing to represent regularization of
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Table 1. Sample achievements with passive min-max criterion

w 0.5 0.25 0.15 0.05 0.03 0.02
Sol. a1 a2 a3 a4 a5 a6 max

�
θ1 θ2 θ3 θ4 θ5 θ6 Aw

S1 0.9 0.0 0.0 0.0 0.0 0.9 0.9 1.8 0.9 0.9 0.0 0.0 0.0 0.0 0.675
S2 0.0 0.9 0.0 0.0 0.0 0.9 0.9 1.8 0.9 0.9 0.0 0.0 0.0 0.0 0.675
S3 0.0 0.0 0.9 0.0 0.0 0.9 0.9 1.8 0.9 0.9 0.0 0.0 0.0 0.0 0.675
S4 0.0 0.0 0.0 0.9 0.0 0.9 0.9 1.8 0.9 0.9 0.0 0.0 0.0 0.0 0.675
S5 0.0 0.0 0.0 0.0 0.9 0.9 0.9 1.8 0.9 0.9 0.0 0.0 0.0 0.0 0.675
S6 0.2 0.2 0.2 0.2 0.2 0.9 0.9 1.9 0.9 0.2 0.2 0.2 0.2 0.2 0.550
S7 0.9 0.9 0.9 0.2 0.6 0.2 0.9 3.7 0.9 0.9 0.9 0.6 0.2 0.2 0.895

the min-max order. Note that the standard RPM model with the scalarizing
achievement function (2) can be expressed as the OWA model (7) with weights
w2 . . . = wm = ε/m and w1 = 1 + ε/m thus strictly decreasing in the case of
m = 2. Unfortunately, for m > 2 it abandons the differences in weighting of the
second largest achievement, the third largest one etc (w2 = . . . = wm = ε/m).
The OWA RPM model (7) allows one to differentiate all the weights by intro-
ducing decreasing series (e.g. geometric ones). One may notice that application
of decreasing weights w = (0.5, 0.25, 0.15, 0.05, 0.03, 0.02) within the OWA RPM
enables selection of solution S6 from Table 1.

Typical RPM model allows weighting of several achievements only by straight-
forward rescaling of the achievement values [12]. The OWA RPM model enables
one to introduce importance weights to affect achievement importance by rescal-
ing accordingly its measure within the distribution of achievements as defined in
the so-called Weighted OWA (WOWA) aggregation [13]. Let w = (w1, . . . , wm)
be a vector of preferential (OWA) weights and let p = (p1, . . . , pm) denote the
vector of importance weights (pi ≥ 0 for i = 1, 2, . . . , m as well as

∑m
i=1 pi = 1).

The corresponding Weighted OWA aggregation of achievements a = (a1, . . . , am)
is defined as follows:

Aw,p(a) =
m∑

i=1

ωiθi(a), ωi = w∗(
∑
k≤i

pτ(k)) − w∗(
∑
k<i

pτ(k)) (8)

where w∗ is a monotone increasing function that interpolates points ( i
m ,
∑

k≤i wk)
together with the point (0.0) and τ representing the ordering permutation for a
(i.e. aτ(i) = θi(a)). We focus on the linear interpolation. The WOWA may be
expressed with more direct formula where preferential (OWA) weights wi are ap-
plied to averages of the corresponding portions of ordered achievements (quantile
intervals) according to the distribution defined by importance weights pi [9,10]:

Aw,p(a) =
m∑

i=1

wim

∫ i
m

i−1
m

F
(−1)

a (ξ) dξ (9)
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Table 2. WOWA selection with p = ( 4
12 , 3

12 , 2
12 , 1

12 , 1
12 , 1

12 )

w 0.5 0.25 0.15 0.05 0.03 0.02 Aw,p(a)

S1 0.9 0.9 0.9 0.9 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7425
S2 0.9 0.9 0.9 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.675
S3 0.9 0.9 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5625
S4 0.9 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.45
S5 0.9 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.45
S6 0.9 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.375
S7 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.6 0.2 0.2 0.8815

Table 3. WOWA selection with p = ( 1
12 , 1

12 , 1
12 , 1

12 , 1
12 , 7

12 )

w 0.5 0.25 0.15 0.05 0.03 0.02 Aw,p(a)

S1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.0 0.0 0.0 0.0 0.855
S2 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.0 0.0 0.0 0.0 0.855
S3 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.0 0.0 0.0 0.0 0.855
S4 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.0 0.0 0.0 0.0 0.855
S5 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.0 0.0 0.0 0.0 0.855
S6 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.2 0.2 0.2 0.2 0.2 0.8475
S7 0.9 0.9 0.9 0.6 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.6875

where F
(−1)

y is the stepwise function F
(−1)

y (ξ) = θi(y) for βi−1 < ξ ≤ βi. It
can also be mathematically formalized as follows. First, we introduce the left-
continuous right tail cumulative distribution function (cdf) defined as:

Fy(d) =
∑
i∈I

piδi(d) where δi(d) =
{

1 if yi ≥ d
0 otherwise (10)

which for any real (outcome) value d provides the measure of outcomes greater or
equal to d. Next, we introduce the quantile function F

(−1)

y as the right-continuous
inverse of the cumulative distribution function Fy:

F
(−1)

y (ξ) = sup {η : Fy(η) ≥ ξ} for 0 < ξ ≤ 1.

For instance applying importance weighting p = ( 4
12 , 3

12 , 2
12 , 1

12 , 1
12 , 1

12 ) to so-
lution achievements from Table 1 and using them together with given there OWA
weights w one gets the WOWA aggregations from Table 2. The corresponding
RPM method selects then solution S6, similarly to the case of equal importance
weights. On the other hand, when increasing the importance of the last outcome
achievements with p = ( 1

12 , 1
12 , 1

12 , 1
12 , 1

12 , 7
12 ) one gets the WOWA values from

Table 3.
The WOWA enhanced ARBDS can be formulated as based on the following

lexicographic optimization problem:

lexmin
x

{(Aw,p(ar), Aw,p(aa), Aw,p(−ao)) : Eq. (4), x ∈ Q} (11)
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used to generate current solutions according to the specified preferences. We
will show that problem (11) always generates an efficient solution to the original
MCO problem complying simultaneously with the ARBDS preference model
assumptions.

Theorem 1. For any reference levels ra
i < rr

i , any positive weights w and p, if
(x̄, ār, āa, āo) is an optimal solution of the problem (11), then x̄ is an efficient
solution of the corresponding multiple criteria problem (1).

Proof. Let (x̄, ār, āa, āo) be an optimal solution of the problem (11) with some
positive weighting vectors w and p. Suppose that x̄ is not efficient to the multiple
criteria problem (1). This means, there exists a decision vector x ∈ Q such
that fi(x) ≤ fi(x̄) for all i ∈ I and fio(x) < fio(x̄) for some outcome index
io ∈ I. Let us define ar

i , aa
i and ao

i according to formula (4). The quadruple
(x,ar ,aa,ao) is then a feasible solution of problem (11). Moreover, ar

i ≤ ār
i ,

aa
i ≤ āa

i and ao
i ≥ āo

i for all i ∈ I where at least one of strict inequalities
ar

i0
< ār

i0
or aa

i0
< āa

i0
or ao

i0
> āo

i0
holds. Hence, due to strict monotonicity of

the WOWA aggregation with positive weighting vectors, one gets Aw,p(ar) ≤
Aw,p(ār), Aw,p(aa) ≤ Aw,p(āa) and Aw,p(−ao) ≤ Aw,p(−āo) with at least one
inequality strict. The latest assertion contradicts the lexicographic optimality of
(x̄, ār, āa, āo) for problem (11), which completes the proof.

Theorem 2. For any reference levels ra
i < rr

i , any positive weights w and p, if
(x̄, ār, āa, āo) is an optimal solution of the problem (11), then all the reservation
level underachievements ār

i are equal 0 whenever there exists a feasible solution
x ∈ Q such that fi(x) ≤ rr

i for all i ∈ I.

Proof. Let (x̄, ār, āa, āo) be an optimal solution of the problem (11) with some
positive weighting vectors w and p. Suppose that ār

i0 > 0 for some i0 ∈ I and
there exists a feasible solution x ∈ Q such that fi(x) ≤ rr

i for all i ∈ I. Let
us define ar

i , aa
i and ao

i according to formula (4) and note that ar
i = 0 for all

i ∈ I. The quadruple (x,ar ,aa, ao) is then a feasible solution of problem (11)
and, due to positive weights, Aw,p(ar) = 0 < Aw,p(ār) thus contradicting the
lexicographic optimality of (x̄, ār, āa, āo).

Theorem 3. For any reference levels ra
i < rr

i , any positive weights w and p, if
(x̄, ār, āa, āo) is an optimal solution of the problem (11), then all the aspiration
level underachievements āa

i are equal 0 whenever there exists a feasible solution
x ∈ Q such that fi(x) ≤ ra

i for all i ∈ I.

Proof. Let (x̄, ār, āa, āo) be an optimal solution of the problem (11) with some
positive weighting vectors w and p. Suppose that āa

i0
> 0 for some i0 ∈ I and

there exists a feasible solution x ∈ Q such that fi(x) ≤ ra
i for all i ∈ I. Let us

define ar
i , aa

i and ao
i according to formula (4) and note that aa

i = ar
i = 0 for all

i ∈ I. The quadruple (x,ar ,aa, ao) is then a feasible solution of problem (11)
and, due to positive weights, Aw,p(aa) = 0 < Aw,p(āa) thus contradicting the
lexicographic optimality of (x̄, ār, āa, āo).
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In order to show that the WOWA ARBDS model provides us with a complete pa-
rameterization of the efficient set, we will prove in the following theorem that for
each efficient solution x̄ there exist aspiration and reservation vectors for which
x̄ with the corresponding values of the multilevel achievements is an optimal
solution of problem (11).

Theorem 4. If x̄ is an efficient solution of the multiple criteria problem (1),
then there exist aspirations levels ra

i such that the quadruple (x̄, ār, āa, āo) is an
optimal solution of the corresponding problem (11), for any reservation levels
rr
i > ra

i and positive weighting vectors w and p.

Proof. Let us set the aspiration levels as ra
i = fi(x̄) for i ∈ I. For any reservation

levels rr
i > ra

i , all the corresponding multilevel achievements defined according
to formula (4) take the zero values: ār = 0, āa = 0 and āo = 0. Suppose
that for some weights the quadruple (x̄, 0, 0, 0) is not an optimal solution of the
corresponding problem (11). This means there exists a vector x ∈ Q such that
ar = 0, aa = 0, ao ≥ 0 and Aw,p(−ao) < Aw,p(−āo). Hence, fi(x) ≤ fi(x̄) ∀ i ∈
I and fio(x) < fio(x̄) for some index io ∈ I. The latest assertion contradicts the
efficiency of x̄ to (1), which completes the proof.

In the proof of Theorem 4 we have used one set of preferential parameters leading
to the given solution. Obviously, there are many alternative parameter settings
allowing to reach this goal. For instance, one may set the reservation levels as
rr
i = fi(x̄) for i ∈ I while taking any aspiration levels ra

i < rr
i .

4 Linear Programming Implementation

An important advantage of the RPM depends on its easy implementation as
an expansion of the original MCO problem. Actually, even complicated partial
achievement functions of the form (3) are strictly increasing and convex, thus
allowing for implementation of the entire RPM model (2) by an LP expansion
[7]. The same applies to the WOWA enhanced ARBDS.

Recall that formula (9) defines the WOWA value applying preferential weights
wi to importance weighted averages within quantile intervals. It may be refor-
mulated to use the tail averages

Aw,p(a) =
m∑

k=1

w′
kmL(a,p,

k

m
), L(y,p, ξ) =

∫ ξ

0

F
(−1)

y (α)dα (12)

where weights w′
k = wk −wk+1 for k = 1, . . . , m−1 and w′

m = wm and L(y,p, ξ)

is defined by left-tail integrating of F
(−1)

y .
Values L(a,p, ξ) for any 0 ≤ ξ ≤ 1 can be given by optimization:

L(a,p, ξ) = max
si

{
m∑

i=1

aisi :
m∑

i=1

si = ξ, 0 ≤ si ≤ pi ∀ i ∈ I} (13)
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Introducing dual variable t corresponding to the equation
∑m

i=1 si = ξ and
variables di corresponding to upper bounds on si one gets the following LP dual
expression for L(a,p, ξ)

L(a,p, ξ) = min
t,di

{ξt +
m∑

i=1

pidi : t + di ≥ ai, di ≥ 0 ∀ i ∈ I} (14)

Following (12) and (14) one gets finally the following model for the WOWA
enhanced ARBDS:

lex min [
m∑

k=1

w′
kzr

k,
m∑

k=1

w′
kza

k ,
m∑

k=1

w′
kzo

k]

s.t. x ∈ Q
fi(x)/(rr

i − ra
i ) + ao

i − aa
i − ar

i = ra
i ∀ i ∈ I

ao
i ≥ 0, 0 ≤ aa

i ≤ 1, ar
i ≥ 0 ∀ i ∈ I

zr
k = ktrk + m

m∑
i=1

pid
r
ik, ar

i ≤ trk + dr
ik, dr

ik ≥ 0 ∀ i, k ∈ I

za
k = ktak + m

m∑
i=1

pid
a
ik, aa

i ≤ tak + da
ik, da

ik ≥ 0 ∀ i, k ∈ I

zo
k = ktok + m

m∑
i=1

pid
o
ik, −ao

i ≤ tok + do
ik, do

ik ≥ 0 ∀ i, k ∈ I

(15)

thus allowing for implementation as an LP expansion of the original problem.
The following theorem justifies model (15) as an implementation of the WOWA
ARBDS approach (11) thus preserving its preference model properties.

Theorem 5. For any reference levels ra
i < rr

i , any positive importance weights
pi and positive strictly decreasing weights wi, if (x̄, ār, āa, āo) is an optimal so-
lution of the problem (15), then it is an optimal solution of the corresponding
problem (11).

Proof. Let (x̄, ār, āa, āo) be an optimal solution of the problem (15) with some
positive weighting vectors w and p. Following the WOWA formulas (12) and (14)
one may notice that the problem (15) is equivalent to the following lexicographic
optimization:

lexmin
x

{(Aw,p(ar), Aw,p(aa), Aw,p(−ao)) : Eq. (6), x ∈ Q} (16)

Hence, if ār
i , āa

i and āo
i fulfill formula (4) for x̄, then the quadruple x̄ is an optimal

solution of the corresponding problem (11). In order to prove that formula (4)
is satisfied it is enough to show that āo

i ā
a
i = 0 and (1 − āa

i )ār
i = 0.

Suppose that āo
i0

āa
i0

> 0 for some index i0 ∈ I. One may decrease then
values of both variables āo

i0 and āa
i0 by the same small positive number. This

means, for sufficiently small positive number δ the quadruple (x̄, āo − δei0 , ā
a −

δei0 , ā
r), where ei0 denotes the unit vector corresponding to index i0, is fea-

sible to problem (16). Due to positive weights wi and pi, one gets (Aw,p(ār),
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Aw,p(āa−δei0), Aw,p(−āo +δei0)) <lex (Aw,p(ār), Aw,p(āa), Aw,p(−āo)) which
contradicts optimality of (x̄, ār, āa, āo) to problem (16) and thereby (15).

Further, suppose that (1 − āa
i0)ā

r
i0 > 0 for some index i0 ∈ I. One may

decrease then value of variable ār
i0

and simultaneously increase āa
i0

by the same
small positive number. This means, for sufficiently small positive number δ the
quadruple (x̄, ā−, āa +δei0 , ā

r −δei0) is feasible to problem (16). Due to positive
weights wi and pi, one gets (Aw,p(ār − δei0), Aw,p(āa + δei0), Aw,p(−āo)) <lex

(Aw,p(ār), Aw,p(āa), Aw,p(−āo)) which contradicts optimality of (x̄, ār, āa, āo)
to problem (16) and thereby (15).

Thus (x̄, āo, āa, ār) fulfills formula (4) and therefore it is an optimal solution
of the corresponding problem (11).

Corollary 1. For any reference levels ra
i < rr

i any positive importance weights
pi and positive strictly decreasing weights wi, if (x̄, ār, āa, āo) is an optimal so-
lution of the problem (15), then x̄ is an efficient solution of the corresponding
multi-criteria problem (1).

Corollary 2. If x̄ is an efficient solution of the multiple criteria problem (1),
then there exist aspirations levels ra

i = fi(x) such that (x̄, ār, āa, āo) is an
optimal solution of the corresponding problem (15), for any reservation levels
rr
i > ra

i , any positive importance weights pi and positive strictly decreasing
weights wi.

5 Conclusions

The reference point method is a very convenient technique for interactive analy-
sis of the multiple criteria optimization problems. It provides the DM with a
tool for an open analysis of the efficient frontier. The interactive analysis is
navigated with the commonly accepted control parameters expressing reference
levels for the individual objective functions. The partial achievement functions
quantify the DM satisfaction from the individual outcomes with respect to the
given reference levels. The final scalarizing function is built as the augmented
min-max aggregation of partial achievements which means that the worst in-
dividual achievement is essentially maximized but the optimization process is
additionally regularized with the term representing the average achievement.
The regularization by the average achievement is easily implementable but it
may disturb the basic max-min aggregation. In order to avoid inconsistencies
caused by the regularization, the max-min solution may be regularized with
the OWA aggregation combining all the partial achievements by allocating the
largest weight to the worst achievement, the second largest weight to the second
worst achievement, the third largest weight to the third worst achievement, and
so on. Further following the concept of the Weighted OWA [13] the importance
weighting of several achievements may be incorporated into the RPM. Such a
WOWA enhancement of the RPM uses importance weights to affect achieve-
ment importance by rescaling accordingly its measure within the distribution of
achievements rather than straightforward rescaling of achievement values [12].
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The ordered regularizations are more complicated in implementation due to
the requirement of pointwise ordering of partial achievements. However, the re-
cent progress in optimization methods for ordered averages [8] allows one to
implement the OWA RPM quite effectively by taking advantages of piecewise
linear expression of the cumulated ordered achievements. Similar, model can be
achieved for the WOWA enhanced ARBDS. Actually, the resulting formulation
extends the original constraints and criteria with simple linear inequalities thus
allowing for a quite efficient implementation.
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Abstract. This paper studies the satisfaction of the well-known Non-
Contradiction Principle within the class of uninorm aggregation func-
tions, taking into account that this principle may be interpreted in two
different ways (a strong one, based on falsity, and a weaker one, relying
on self-contradiction). The logical negation is represented by means of
strong negation functions, and the most important classes of uninorms
are examined.

Keywords: Aggregation functions. Uninorms. Strong Negations. Non-
Contradiction Principle.

1 Introduction

Uninorms constitute an important and broad class of mixed aggregation func-
tions. Since their inception in 1996 ([1]) they have attracted a significant and
varied amount of research activity, ranging from theoretical developments to
practical applications. Among the former one may refer to the investigations on
uninorms’ structure and classification (see e.g. [2–8]) or to the study of differ-
ent mathematical properties, such as distributivity or modularity, that usually
translate into solving functional equations (see e.g. [9–12]). On the other hand,
uninorms have been and continue to be successfully applied in different fields
such as expert systems ([13, 14]), fuzzy systems modeling ([15, 16]), approximate
reasoning ([17–20]), fuzzy logic ([21, 22]) or fuzzy neurocomputing ([23, 24]).

Several classes and parameterized families of uninorms are nowadays available
(see e.g. the recent overview given in [25]), so the question of how to choose
the most suitable function for each particular application arises. Various criteria
may help in making this decision, such as the requirement of some mathematical
properties (e.g. continuity on some specific regions, or idempotency) or the fitting
of prototypical data.

Another criterion is the behavior of the uninorm when receiving contradictory
information: should it be tolerant, intolerant, or perhaps indifferent? In order to
analyze this issue, one first needs, on one hand, to clarify what “contradictory
information” means, and, on the other hand, to decide how to evaluate the
function’s behavior. One possible approach is the following: first, to establish
that contradictory information is represented by couples (x, N(x)), where N is a
negation function, and then to evaluate the function’s behavior by checking the

V. Torra and Y. Narukawa (Eds.): MDAI 2008, LNAI 5285, pp. 50–61, 2008.
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fulfillment of two well-known mathematical properties, the Non-Contradiction
Principle (when seeking intolerant behavior) and the Excluded-Middle Principle
(for tolerant behavior).

The present paper focusses on the Non-Contradiction (NC) Principle, aiming
to find out which subclasses of uninorms satisfy it and subject to which con-
ditions. Following [26], the NC Principle is understood in two different ways,
one based on falsity, as in Modern Logic, and the other one based on self-
contradiction, as in Ancient Logic (note that the satisfaction of this principle
within the general framework of bivariate aggregation functions1 has been stud-
ied in [27] -ancient logic interpretation- and in [28] -modern logic interpretation-).

The paper is organized as follows. Section 2 provides an overview of the most
important issues regarding uninorms, strong negation functions and the NC
Principle. Section 3 includes the main results of the paper. It first gives some
general results on the fulfillment of the NC Principle within the class of uni-
norms, and then addresses the particular cases of the most important known
subclasses: Umin-uninorms, representable uninoms, ]0, 1[2-continuous uninorms
and idempotent uninorms. Finally, the paper ends with some conclusions.

2 Preliminaries

Uninorms were introduced as a generalization of triangular norms and conorms
(t-norms and t-conorms for short)2. Excluding the limiting cases of t-norms and
t-conorms, uninorms are defined as follows:

Definition 1 (Uninorm). A uninorm is a function U : [0, 1]2 → [0, 1] which
is associative, commutative, non-decreasing in each variable and has a neutral
element e belonging to the open interval ]0, 1[.

Uninorms present a conjunctive behavior when dealing with low input values
(those below the neutral element e) and a disjunctive one for high values (those
above e). More precisely, any uninorm U with neutral element e is associated
with a t-norm TU and a t-conorm SU such that ([4]):

∀(x, y) ∈ [0, e]2, U(x, y) = e · TU

(x

e
,
y

e

)
,

∀(x, y) ∈ [e, 1]2, U(x, y) = e + (1 − e) · SU

(
x − e

1 − e
,
y − e

1 − e

)
.

Otherwise (i.e., when receiving a mixture of low and high inputs), unimorms
are averaging functions:

∀(x, y) ∈ [0, e] × [e, 1] ∪ [e, 1] × [0, e], min(x, y) ≤ U(x, y) ≤ max(x, y).
1 Also known as aggregation operators: operations A : [0, 1]2 → [0, 1] which are non-

decreasing in each variable and that verify the boundary conditions A(0, 0) = 0 and
A(1, 1) = 1.

2 We shall assume that the reader is familiar with the basic concepts regarding t-norms
and t-conorms, which can be found e.g. in [29] or [30].
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Uninorms may be classified into two different categories ([4]): those verifying
U(0, 1) = 0, which have annihilator element a = 0 and are known as conjunctive
uninorms, and those verifying U(0, 1) = 1, which have annihilator a = 1 and are
known as disjunctive uninorms. Different classes of uninorms have been identified
and studied. The definition and main properties of the most important ones will
be overviewed in the next section.

Recall on the other hand that so-called strong negations ([31]), i.e., non-
increasing functions N : [0, 1] → [0, 1] which are involutive (that is, verify
N(N(x)) = x for any x ∈ [0, 1]), are the most usual way for representing the logic
negation. Due to their definition, strong negations are continuous and strictly de-
creasing functions, they satisfy the boundary conditions N(0) = 1 and N(1) = 0,
and they have a unique fixed point, that we will denote xN , verifying 0 < xN < 1
and N(xN ) = xN . Note also that, for any x ∈ [0, 1], it is x ≤ N(x) if and only if
x ≤ xN . Recall in addition that a function N : [0, 1] → [0, 1] is a strong negation
if and only if there exists a strictly increasing bijection ϕ : [0, 1] → [0, 1] such
that N = ϕ−1 ◦(1−Id[0,1])◦ϕ, i.e., N(x) = ϕ−1(1−ϕ(x)) for any x ∈ [0, 1]. The
most commonly used strong negation is the standard negation, obtained with
ϕ = Id[0,1], defined as N(x) = 1 − x for all x ∈ [0, 1].

Regarding the Non-Contradiction Principle, it is well-known that such law, in
its ancient Aristotelian formulation, can be described as follows: for any state-
ment p, the statements p and not p cannot be at the same time, i.e., p ∧ ¬p is
impossible. In [26] it is argued that such formulation may be interpreted in at
least two different ways, depending on how the term impossible is understood:

– If the approach that is common in Modern Logic (ML) is adopted, the term
impossible may be thought as false, and then the NC Principle may be ex-
pressed, in a structure with minimum element 0, as p ∧ ¬p = 0 for any
statement p.

– Another possibility, which may be considered closer to Ancient Logic (AL),
is to interpret impossible as self-contradictory, understanding that an object
is self-contradictory whenever it entails its negation. In this case, the NC
Principle may be written as p ∧ ¬p � ¬(p ∧ ¬p) for any statement p, where
� represents an entailment relation.

In the context of aggregation functions, if the operation ∧ is represented by
means of a bivariate aggregation function A : [0, 1]2 → [0, 1] and the logical
negation is modeled by a strong negation N , the NC law can be interpreted in
the two following ways:

– Modern Logic interpretation: it is said that A satisfies NC(ML) with respect
to (w.r.t.) N if

∀x ∈ [0, 1] : A(x, N(x)) = 0 NC(ML)

– Ancient Logic interpretation: it is said that A satisfies NC(AL) with respect
to (w.r.t.) N if

∀x ∈ [0, 1] : A(x, N(x)) ≤ N(A(x, N(x))) NC(AL)
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From now on, we will say that A satisfies NC(ML) (respectively, satisfies
NC(AL)) if there exists a strong negation N such that A satisfies NC(ML)
(respectively, NC(AL)) w.r.t. N .

With all the above preliminary material at hand, the main objective of the
present paper can now be reformulated as follows: it consists in solving the above
functional equation and functional inequality when A is taken as a uninorm, i.e.,
to answer the following questions:

– Which classes of uninorms do satisfy NC(ML) (respectively NC(AL))?
– With respect to what kinds of strong negations?
– Are there uninorms satisfying NC(ML) (respectively NC(AL)) w.r.t. any

strong negation? In which classes?

3 Main Results

Let us first of all deal with the Modern Logic equation, whose solution for the
case of uninorms is very simple (see also [28] where this is proved applying a
more general result):

Proposition 1. No uninorm satisfies NC(ML).

Proof. Let U be a uninorm with neutral element e ∈]0, 1[, let N be a strong
negation and let us suppose that U satisfies NC(ML) w.r.t. N . Then, choosing
x = e, it would be U(e, N(e)) = 0, which is equivalent to N(e) = 0 or e = 1,
and this is contradictory with the hypothesis e ∈]0, 1[. ��

The case of Ancient Logic interpretation is more interesting. Let us first recall
the following characterization of the NC(AL) inequality for arbitrary aggregation
functions:

Proposition 2. [27] Let A be a bivariate aggregation function on [0, 1] and let
N be a strong negation with fixed point xN . Then A satisfies NC(AL) w.r.t. N
if and only if

∀x ∈ [0, 1] : A(x, N(x)) ≤ xN (1)

In the case of uninorms, the range for checking the condition given in (1) can be
reduced:

Proposition 3. Let U be a uninorm with neutral element e ∈]0, 1[ and let N be
a strong negation with fixed point xN . Then U satisfies NC(AL) w.r.t. N if and
only if

∀x ∈ [0, N(e)] : U(x, N(x)) ≤ xN (2)

Proof. We need to prove that, when dealing with uninorms, (2) implies (1), i.e.,
the inequality U(x, N(x)) ≤ xN is true for any x ∈]N(e), 1]. Choosing x = N(e)
in (2) gives N(e) ≤ xN , so the two following cases may be distinguished:
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– If x ∈]N(e), xN ], it is x ≤ xN ≤ e and N(x) ≤ e, and then, since any t-norm
is below min,

U(x, N(x)) = e · TU

(
x

e
,
N(x)

e

)

≤ e · min
(

x

e
,
N(x)

e

)
= min(x, N(x)) ≤ x ≤ xN .

– If x ∈]xN , 1], it is N(x) ≤ xN , i.e., N(x) ∈ [0, N(e)] or N(x) ∈]N(e), xN ], so
either by hypothesis or thanks to the item above it is U(N(x), N(N(x))) =
U(N(x), x) ≤ xN , which, by commutativity, entails U(x, N(x)) ≤ xN .

��

Let us make explicit some intuitive consequences of the characterization given
in Proposition 3:

Corollary 1.

1. If a uninorm satisfies NC(AL), then it is necessarily a conjunctive uninorm.
2. If a uninorm with neutral element e satisfies NC(AL) w.r.t. a strong negation

N with fixed point xN , then e ≥ xN .
3. No uninorm satisfies NC(AL) with respect to every strong negation.

Proof. The two first items are obtained taking x = 0 and x = N(e) in (2),
respectively. The last one is easily proved directly from the second item: it cannot
be e ≥ xN for any xN ∈]0, 1[, since e �= 1. ��

Therefore, uninorms satisfying NC(AL) may only be found among conjunctive
ones choosing an N such that e ≥ xN , and only the value of the function at the
couples (x, N(x)) where x ≤ N(e) (and hence N(x) ≥ e) needs to be checked.
In what follows the behavior of the main classes of conjunctive uninorms is
analyzed.

3.1 The Class Umin

The class of conjunctive uninorms known as Umin is obtained when choosing the
limiting averaging function min for the region [0, e] × [e, 1] ∪ [e, 1] × [0, e]. Such
uninorms have been characterized as follows:

Theorem 1. ([4]) A bivariate function U on [0, 1] is a conjunctive uninorm
with neutral element e ∈]0, 1[ such that the section U(·, 1) is continuous on [0, e[
if and only if there exists a t-norm T and a t-conorm S such that

U(x, y) =

⎧⎪⎨
⎪⎩

e · T
(

x
e , y

e

)
if (x, y) ∈ [0, e]2,

e + (1 − e) · S
(

x−e
1−e , y−e

1−e

)
if (x, y) ∈ [e, 1]2,

min(x, y) otherwise

The behavior of this class of uninorms with respect to the NC(AL) Principle is
given in the following proposition (see also [27]):
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Proposition 4. A uninorm U ∈ Umin with neutral element e ∈]0, 1[ satisfies
NC(AL) w.r.t. a strong negation N with fixed point xN if and only if e ≥ xN .

Proof. If U satisfies NC(AL) w.r.t. N then it is clearly e ≥ xN (see Corollary 1).
Conversely, if e ≥ xN , it is N(e) ≤ e, so x ∈ [0, N(e)] implies x ≤ e, and in such
case Theorem 1 ensures U(x, N(x)) ≤ min(x, N(x)). Then it is U(x, N(x)) ≤ xN

for any x ∈ [0, N(e)], and this means, according to Proposition 3, that U satisfies
NC(AL) w.r.t. N . ��

Of course, given e ∈]0, 1[ it is always possible to find a strong negation N such
that e ≥ xN , so we have the following immediate consequence of the above
characterization:

Corollary 2. Any uninorm in Umin satisfies NC(AL).

Example 1. The weakest uninorm satisfying NC(AL) is the weakest uninorm,
given by

U(x, y) =

⎧⎨
⎩

0, if (x, y) ∈ [0, e[2,
max(x, y), if (x, y) ∈ [e, 1]2,
min(x, y) otherwise.

Indeed, the weakest uninorm belongs to Umin ([4], it is built by means of the
weakest t-norm, the drastic product TD, and the weakest t-conorm, max). Then,
according to Proposition 4, it satisfies NC(AL) w.r.t. N as long as N is taken
such that e ≥ xN .

Example 2. In addition to the weakest uninorm, another commonly cited ex-
ample of uninorm that, according to Proposition 4, appears to satisfy NC(AL)
w.r.t. any N such that e ≥ xN is the one obtained from the family Umin by
choosing T = min and S = max ([1]):

Uc(x, y) =
{

max(x, y) if (x, y) ∈ [e, 1]2,
min(x, y) otherwise.

3.2 Representable Uninorms

Representable uninorms ([2–4]) constitute an important class of uninorms that
can be built by means of univariate generating functions. Restricting ourselves
to the conjunctive case:

Proposition 5. [4] Let u : [0, 1] → [−∞, +∞] be a strictly increasing bijection
such that u(e) = 0 for some e ∈]0, 1[. The function U : [0, 1]2 → [0, 1] given by

U(x, y) =
{

u−1(u(x) + u(y)), if (x, y) ∈ [0, 1]2\{(0, 1), (1, 0)},
0 otherwise

is a conjunctive uninorm with the neutral element e (known as a conjunctive
representable uninorm).
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The function u, which is determined up to a positive multiplicative constant,
is called an additive generator of the representable uninorm U . Representable
uninorms are almost continuous (i.e., continuous everywhere except at the cor-
ners (0, 1) and (1, 0)), strictly increasing on ]0, 1[2 and have an associated strong
negation Nu, given by Nu(x) = u−1(−u(x)), with fixed point xNu = e.

The following characterization is directly obtained from Propositions 3 and 5:

Proposition 6. Let U be a conjunctive representable uninorm with neutral ele-
ment e and additive generator u, and let N be a strong negation with fixed point
xN . Then U satisfies NC(AL) w.r.t. N if and only if

∀x ∈]0, N(e)] : N(x) ≤ u−1(u(xN ) − u(x)) (3)

The question of whether the inequality (3) can always be satisfied is answered
below:

Corollary 3. Any conjunctive representable uninorm satisfies NC(AL).

Proof. Choosing N such that xN = e, (3) is equivalent to N(x) ≤ Nu(x) for
all x ∈]0, N(e)], where Nu is the uninorm’s associated strong negation. Conse-
quently, any conjunctive representable uninorm satisfies NC(AL) at least w.r.t.
its associated strong negation, as well as w.r.t. any weaker strong negation with
fixed point e. ��

Note also that the chosen strong negations must necessarily be weaker than the
uninorm’s associated negation, even if they have a different fixed point:

Proposition 7. Let U be a conjunctive representable uninorm with neutral el-
ement e and additive generator u, and let N be a strong negation. If U satisfies
NC(AL) w.r.t. N , then necessarily N ≤ Nu.

Proof. We have to prove that N(x) ≤ Nu(x) for all x ∈ [0, 1]. This is obvious
if x ∈ {0, 1}; otherwise, Proposition 2 and the second item in Corollary 1 entail
U(x, N(x)) ≤ e, which is equivalent to N(x) ≤ Nu(x). ��

If we restrict ourselves to negations having e as fixed point, then the above
necessary condition becomes also sufficient:

Proposition 8. Let U be a conjunctive representable uninorm with neutral ele-
ment e and additive generator u, and let N be a strong negation with fixed point
e. Then U satisfies NC(AL) w.r.t. N if and only if N ≤ Nu.

Proof. Taking into account the previous Proposition, we just have to prove that
U satisfies NC(AL) w.r.t. N whenever it is N ≤ Nu, but this is obvious thanks
to the monotonicity of U and the fact (see the proof of Corollary 3) that U
satisfies NC(AL) w.r.t. Nu. ��

Example 3. An important family of parameterized conjunctive representable
uninorms ([2–4]) is given, with λ ∈]0, +∞[, by
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Uλ(x, y) =
{ λxy

λxy+(1−x)(1−y) if (x, y) ∈ [0, 1]2\{(0, 1), (1, 0)},
0 otherwise

Uλ has neutral element eλ = 1
1+λ and it can be obtained by means of the addi-

tive generator uλ(x) = log
(

λx
1−x

)
. According to the above results, Uλ satisfies

NC(AL) w.r.t. its associated negation, Nuλ
, and any weaker negation with the

same fixed point.

3.3 ]0, 1[-continuous Uninorms

Representable uninorms belong to a wider class of uninorms: those which are
continuous on the open square ]0, 1[2. The representation of such uninorms in
the conjunctive case is recalled below:

Theorem 2. ([7], see also [8]) Let U be a conjunctive uninorm with neutral
element e ∈]0, 1[ which is continuous on ]0, 1[2. Then U can be represented as
follows:

U(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e · T
(

x
e , y

e

)
if x, y ∈ [0, a],

u−1(u(x) + u(y)) if x, y ∈]a, 1[,
x if x ∈ [0, a], y ∈]a, 1[ or x ∈ [0, c[, y = 1,
y if x ∈]a, 1[, y ∈ [0, a] or x = 1, y ∈ [0, c[,
1 if x ∈]c, 1], y = 1 or x = 1, y ∈]c, 1],
x or y if x = c, y = 1 or x = 1, y = c

where T is a continuous t-norm, u : [a, 1] → [−∞, +∞] is a strictly increasing
bijection such that u(e) = 0, a ∈ [0, e[, c ∈ [0, a] and U(c, c) = c.

The satisfaction of the NC(AL) in the case of conjunctive ]0, 1[2-continuous
uninorms can be characterized as follows:

Proposition 9. Let U be a conjunctive uninorm continuous on ]0, 1[2 with
neutral element e ∈]0, 1[ and let N be a strong negation with fixed point xN .
Then U satisfies NC(AL) w.r.t. N if and only if it is either N(e) ≤ a or else
N(x) ≤ u−1(u(xN ) − u(x)) for all x ∈]a, N(e)], where a and u come from the
representation of U given in Theorem 2.

Proof. The proof from left to right is accomplished using Proposition 3 and the
fact that x ∈]a, N(e)] implies, by Theorem 2, U(x, N(x)) = u−1(u(x)+u(N(x))).
Conversely:

– If N(e) ≤ a, Theorem 2 shows that for any x ∈ [0, N(e)] it is U(x, N(x)) =
min(x, N(x)), and hence U satisfies NC(AL) w.r.t. N .

– Otherwise it is, by hypothesis, N(x) ≤ u−1(u(xN )−u(x)) for all x ∈]a, N(e)],
and then:
• If x ∈]a, N(e)], since it is x > a and N(x) ≥ e Theorem 2 shows that

the hypothesis is equivalent to U(x, N(x)) ≤ xN .
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• Ifx ∈ [0, a],according toTheorem2 it is eitherU(x, N(x)) = min(x, N(x))
or U(x, N(x)) = e · T

(
x
e , N(x)

e

)
, but both cases entail U(x, N(x)) ≤ xN .

��

Corollary 4. Any conjunctive uninorm continuous on ]0, 1[2 satisfies NC(AL).

Proof. If the value a in Theorem 2 is zero, then U is a conjunctive representable
uninorm and hence it satisfies NC(AL) (Corollary 3). Otherwise, according to
Proposition 9 it suffices to choose a strong negation N such that N(e) ≤ a in
order to guarantee that U satisfies NC(AL) w.r.t. N (note that xN ≤ a entails
this latter condition). ��

3.4 Idempotent Uninorms

Idempotent uninorms, that is, those verifying U(x, x) = x for all x ∈ [0, 1],
were first studied for the particular cases of left and right-continuous functions
in [5], and have later on been characterized in the general case in [6]. We will
concentrate on the former:

Theorem 3. ([5])

1. A bivariate function U on [0, 1] is a left-continuous idempotent uninorm
with neutral element e ∈]0, 1] if and only if there exists a decreasing function
g : [0, 1] → [0, 1] with fixed point e satisfying
(i) g(g(x)) ≥ x for all x ∈ [0, g(0)], and
(ii) g(x) = 0 for all x ∈]g(0), 1]

such that U is given, for any (x, y) ∈ [0, 1]2, by

U(x, y) =
{

min(x, y) if y ≤ g(x) and x ≤ g(0),
max(x, y) otherwise.

2. A bivariate function U on [0, 1] is a right-continuous idempotent uninorm
with neutral element e ∈ [0, 1[ if and only if there exists a decreasing function
g : [0, 1] → [0, 1] with fixed point e satisfying
(i) g(g(x)) ≤ x for all x ∈ [g(1), 1], and
(ii) g(x) = 1 for all x ∈ [0, g(1)[

such that U is given, for any (x, y) ∈ [0, 1]2, by

U(x, y) =
{

max(x, y) if y ≥ g(x) and x ≥ g(1),
min(x, y) otherwise.

With regards to the satisfaction of the NC(AL) law, we can first of all note the
existence of at least one idempotent uninorm satisfying NC(AL): the uninorm
Uc given in Example 2, which is clearly a conjunctive right-continuous idempo-
tent uninorm that, according to Proposition 4, satisfies NC(AL) w.r.t. any N
such that e ≥ xN . However, contrary to what happens with uninorms in Umin

and conjunctive ]0, 1[2-continuous uninorms, not every conjunctive idempotent
uninorm satisfies NC(AL). In order to prove this, let us first note that Theorem
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3 establishes that any idempotent uninorm is determined by a unary function g,
usually referred to as its associated function, that may be used to characterize
the classes of (conjunctive) left and right-continuous idempotent uninorms that
satisfy NC(AL):

Proposition 10. Let N be a strong negation with fixed point xN .

1. A left-continuous idempotent uninorm with neutral element e and associated
function g satisfies NC(AL) w.r.t. N if and only if

∀x ∈ [0, N(e)] : N(x) ≤ g(x) (4)

2. A right-continuous idempotent uninorm with neutral element e and associ-
ated function g satisfies NC(AL) w.r.t. N if and only if

N(e) < g(1) or ∀x ∈ [g(1), N(e)] : N(x) < g(x) (5)

Proof. The results are obtained applying Proposition 3 to the characterization
given in Theorem 3. ��

Remark 1. Note that the conditions (4) and (5) in the above Proposition im-
plicitly ensure the conjunctive behavior of the uninorms: indeed, it is g(0) = 1
for the left-continuous case (choosing x = 0 in (4)) and g(1) �= 0 for the right-
continuous one (g(1) = 0 would entail the false statement g(0) > 1 choosing
x = 0 in (5)).

The characterization given in Proposition 10 allows for the following conclusions:

Corollary 5.

1. Conjunctive right-continuous uninorms always satisfy NC(AL).
2. Not every conjunctive left-continuous uninorms satisfies NC(AL), but some

do.

Proof. First, given an arbitrary conjunctive right-continuous uninorm, it is al-
ways possible to find a strong negation N such that N(e) < g(1), and then,
according to Proposition 10, such uninorm satisfies NC(AL) w.r.t. N .

Now, according to Theorem 3, the function

g(x) =

⎧⎨
⎩

1 if x = 0,
e if 0 < x ≤ e,
0 otherwise

provides a conjunctive left-continuous uninorm for which, due to the continu-
ity of strong negations, it is impossible to find any N such that N(x) ≤ g(x)
for all x ∈ [0, N(e)]. On the other hand, there are left-continuous idempotent
uninorms satisfying NC(AL): for example, the choice of a strong negation N
with fixed point xN = e as associated function directly provides a conjunctive
left-continuous idempotent uninorm (called UN

c in [5]) which obviously satisfies
NC(AL) w.r.t. N . ��
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4 Conclusions

This paper has analyzed the behavior of uninorms when dealing with contradic-
tory information by studying the satisfaction of the Non-Contradiction Principle
under two different interpretations. The main conclusions are the following:

– No uninorm satisfies the Non-Contradiction Principle in its stronger version
(NC(ML), based on falsity).

– Regarding the weaker version (NC(AL), based on self-contradiction):
• No uninorm satisfies it w.r.t. any strong negation.
• Uninorms satisfying NC(AL) w.r.t. some strong negations may be found

in each of the main classes of conjunctive uninorms. Such uninorms
have been characterized, in particular, in the cases of Umin-uninorms,
representable uninorms, ]0, 1[2-continuous uninorms and left and right-
continuous idempotent uninorms (Propositions 4, 6, 9 and 10).

• Umin-uninorms, conjunctive ]0, 1[2-continuous uninorms (including rep-
resentable uninorms) and conjunctive right-continuous idempotent uni-
norms always satisfy NC(AL) (i.e., it is always possible to find a strong
negation such that the NC(AL) inequality is verified). However, even if
many conjunctive left-continuous idempotent uninorm satisfy NC(AL),
not every uninorm in this class satisfies it.
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Abstract. Neat OWA operators have been defined as a generalization of
the OWA operators. In this paper we study these operators establishing
some relationships with some other operators. In particular, we link them
with the Losonczi’s mean.

Keywords: Aggregation operators, Losonczi’s mean, OWA operators.

1 Introduction

Aggregation operators [4,8,19] are used to combine information to obtain a da-
tum of better quality. In recent years there is an increasing interest in these topics
for their application in decision problems and artificial intelligence applications.

In this paper we focus on the Losonczi’s mean, which was proposed in [9]
and which generalizes Bajraktarević’s mean [1,2]. Our interest is to establish
some relationships between these operators and some of the ones that have
been defined more recently related to the OWA operator. In particular, we will
consider the OWA, and the neat OWA.

The structure of this paper is as follows. In Section 2 we review fuzzy measures
and introduce a few results related to the Choquet Stieltjies integral. In Section 3,
we review the aggregation operators we need later on. Then, in Section 5, we
establish the relationships between these operators. Section 6 uses Losonczi’s
mean to introduce a Losonczi’s OWA operator. The paper finishes with some
conclusions.

2 Fuzzy Measures and the Choquet Stieltjes Integral

In this section, we define fuzzy measures, the Choquet integral and the Choquet
Stieltjes integral, and show their basic properties.

Let X be a locally compact Hausdorff space and B be a class of Borel sets,
that is, the smallest σ−algebra which includes the class of all closed sets. We
say that (X,B) is a measurable space.

V. Torra and Y. Narukawa (Eds.): MDAI 2008, LNAI 5285, pp. 62–73, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Choquet Stieltjes Integral, Losonczi’s Means and OWA Operators 63

Example 1. (1) The set of all real numbers R is a locally compact Hausdorff
space. If X = R, B is the smallest σ− algebra which includes the class of all
closed intervals.

(2) Let X := {1, 2, . . . , N}. X is a compact Hausdorff space with a discrete
topology. Then we have B = 2X .

Definition 1. [17] Let (X,B) be a measurable space. A fuzzy measure (or a
non-additive measure) µ is a real valued set function, µ : B −→ [0, 1] with the
following properties;

(1) µ(∅) = 0
(2) µ(A) ≤ µ(B) whenever A ⊂ B, A, B ∈ B.

We say that the triplet (X,B, µ) is a fuzzy measure space if µ is a fuzzy
measure.

Definition 2. Let (X,B) be a measurable space. A function f : X → R is said
to be measurable if {x|f(x) ≥ α} ∈ B for all α ∈ R.

Example 2. Let f be a continuous function. Then for all α ∈ R {f ≥ α} is a
closed set. Therefore f is measurable.

F(X) denotes the class of non-negative measurable functions, that is,

F(X) = {f |f : X → R+, f : measurable}

Definition 3. [5,11] Let (X,B, µ) be a fuzzy measure space. The Choquet
integral of f ∈ F(X) with respect to µ is defined by

(C)
∫

fdµ =
∫ ∞

0

µf (r)dr,

where µf (r) = µ({x|f(x) ≥ r}).

Suppose that X = {1, 2, . . . , N}. The i−th order statistic a(i) [21] is a functional
on RN which is defined by arranging the components of a = (a1, · · · , aN) ∈ RN

in the increasing order

a(1) ≤ · · · ≤ a(i) ≤ · · · ≤ a(N).

Using the i−th order statistics, the Choquet integral is written as

(C)
∫

adµ =
N∑

i=1

(a(i) − a(i−1))µ({(i) · · · (N)}),

where we define a(0) := 0.

Definition 4. [6] Let f, g ∈ F(X). We say that f and g are comonotonic if

f(x) < f(x′) ⇒ g(x) ≤ g(x′)

for x, x′ ∈ X .
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We say that f and g are strongly comonotonic if

f(x) < f(x′) ⇔ g(x) < g(x′)

for x, x′ ∈ X . f ∼s g denotes that f and g are strongly comonotonic.

Definition 5. Let I be a real-valued functional on F(X). We say I is comonoton-
ically additive if and only if I(f + g) = I(f) + I(g) for comonotonic f, g ∈ F(X).

It is well known that the Choquet integral is a comonotonically additive func-
tional on F(X). Conversely a comonotonically additive functional on F(X) is
represented as a Choquet integral [15,16].

Let Cb(X) be a class of bounded continuous functions on X . Since ∼s is an
equivalent relation, we can define an equivalence class [f ] ∈ Cb(X)/ ∼s. Then
applying Hahn-Banach’s theorem we have the next theorem.

Theorem 1. Let (X,B, µ) be a fuzzy measure space. For every f ∈ Cb(X), there
exists a probability P[f ] on B such that

(C)
∫

fdµ =
∫

fdP[f ].

Now, we define the Choquet-Stieltjes integral [12].

Definition 6. Let (X,B, µ) be a fuzzy measure space and ϕ : R+ → R+ be
a non-decreasing real valued function with ϕ(0) = 0. Then, we can define the
Lebesgue-Stieltjes measure νϕ [14] on the real line by

νϕ((a, b)) := ϕ(b − 0) − ϕ(a + 0),

where ϕ(b + 0) := limx→b+0 ϕ(x) and ϕ(a − 0) := limx→a−0 ϕ(x).
We define the Choquet-Stieltjes integral CSµ,ϕ(f) with respect to µ, ϕ by

CSµ,ϕ(f) :=
∫ ∞

0

µf (r)dνϕ(r),

where µf (r) = µ({x|f(x) ≥ r}).
When we use the space X = {1, 2, . . . , N}, the Choquet-Stieltjes integral can be
rewritten, using the i−th order statistics, as

CSµ,ϕ(a) =
N∑

i=1

(ϕ(a(i)) − ϕ(a(i−1)))µ({(i) · · · (n)})

=
n∑

i=1

ϕ(a(i)){µ({(i) · · · (n)}) − µ({(i + 1) · · · (n)})}.

Proposition 1. Let (X,B, µ) be a fuzzy measure space and ϕ : R+ → R+ be
a continuous and strictly increasing function with ϕ(0) = 0. Then the Choquet-
Stieltjes integral of f with respect to µ, ϕ is a Choquet integral of ϕ(f), that
is,

CSµ,ϕ(f) = (C)
∫

ϕ(f)dµ.
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3 On Some Aggregation Operators

In this section we review some aggregation operators that are later on needed
in this paper. Most of the functions reviewed here can also be found in [19,20].
For the sake of simplicity, we consider aggregation operators in [0, 1]. Other real
intervals might be also appropriate.

The review includes the Losonczi’s mean. This family of means is a general-
ization of weighted means and of quasi-weighted means in the sense that instead
of having constant weights pi attached to inputs ai, they have weights that are
functions of the inputs. That is, the operator uses functions πi of ai, instead of
using weights pi.

Before establishing the Losonczi’s mean, we review the weighted mean and
the quasi-weighted mean to underline the similarities between the operators. We
start with the definition of an aggregation operator and of a weighting vector.
Note that we require aggregation operators to be idempotent although this is
not always the case in the literature.

Definition 7. Let D ⊂ RN . An aggregation operator Ag is a function Ag :
D → R with the following properties;

(1) (Unanimity or idempotency)
Ag(a, . . . , a) = a if (a, . . . , a) ∈ D

(2) (Monotonicity)
If ai ≤ bi for all i = 1, . . . , n, a = (a1, . . . , aN ),b = (b1, . . . , bN ) a,b ∈ D,
then Ag(a) ≤ Ag(b).

An aggregation operator is said to be neat when the result is invariant to any
permutation of the input data. That is, if for any permutation π of {1, . . . , N},
the following equation holds:

Ag(a1, . . . , aN ) = Ag(aπ(1), . . . , aπ(N)).

Definition 8. A vector p = (p1, . . . , pN ) such that pi ≥ 0 and
∑N

i=1 pi = 1 is a
weighting vector of dimension N .

Definition 9. Given a weighting vector p = (p1, . . . , pN ) and a function φ
(strictly increasing with inverse φ−1), the weighted mean WM and the quasi-
weighted mean QWM are defined as follows:

WMp(a) =
N∑

i=1

piai

QWMp(a) = φ−1
( N∑

i=1

piφ(ai)
)

for a = (a1, . . . , aN) ∈ RN .

The next proposition is obvious from Definition 9 and Proposition 1.
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Proposition 2. Let X := {1, 2, . . . , N} and p = (p1, . . . , pN) be a weighting
vector. We can define a probability measure P on 2X by P ({i}) := pN .

WMp(a) = (C)
∫

adP

QWMp(a) = φ−1
(
CSP,φ(a)

)
for a = (a1, . . . , aN) ∈ RN .

As stated above, Losonczi’s means corresponds to the QWM but with weighting
functions πi(ai) instead of weights pi. Additionally, the weights are explicitly
normalized to avoid the cumbersome requirement of functions adding one. We
give now the definition taking all this into account.

Definition 10. [9] Given functions πi and φ (φ strictly increasing with inverse
φ−1), the Losonczi’s mean is defined as follows:

LM(a1, . . . , aN ) = φ−1

(∑N
i=1 πi(ai)φ(ai)∑N

i=1 πi(ai)

)

This operator generalizes the QWM , the WM , and other means as e.g. the
counter-harmonic mean

∑
ap

i /
∑

ap−1
i (also called the BADD operator in [23]).

See e.g. [3] and [19].
We have the next proposition in similar way to Proposition 2.

Proposition 3. Let X := {1, 2, . . . , N}, let πi : R → R+ and let φ : R → R (φ
strictly increasing with inverse φ−1). Then, let us define a probability measure
P on 2X by Pa({i}) := πi(ai)�N

i=1 πi(ai)
. Under these conditions, we have

LMπ,φ(a) = φ−1
(
CSPa,φ(a)

)
for a = (a1, . . . , aN) ∈ RN .

Yager introduced the Ordered Weighting Averaging operator in [22].

Definition 11. [22] Given a weighting vector w = (w1, . . . , wN ), the Ordered
Weighting Averaging operator is defined as follows:

OWAw(a) =
N∑

i=1

wiaσ(i)

where σ defines a permutation of {1, . . . , N} such that aσ(i) ≥ aσ(i+1), a =
(a1, . . . , an).

It is obvious from this definition that the OWA is neat.
A fuzzy measure µ on B is said to be symmetric [10] if µ(A) = µ(B) for

|A| = |B|, A, B ∈ B. Symmetric fuzzy measures on {1, . . . , N} can be represented
in terms of N weights so that µ(A) =

∑|A|
i=1 wi. Using a symmetric fuzzy measure,

we can represent any OWA operator as a Choquet integral.
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Let a,b ∈ Rn be comonotonic. Since aσ(i)+bσ(i) = (a+b)σ(i), OWAw(a+b) =
OWAw(a)+OWAw(b), that is, OWAw is comonotonically additive. Therefore
we have the next proposition.

Proposition 4. Let X := {1, 2, . . . , N}. For every OWAw, there exists a sym-
metric fuzzy measure satisfying µ({N}) := w1 and µ({1, . . . , i}) := w1 + · · ·+wi

for i = 1, 2, . . . , N , such that

OWAw(a) = (C)
∫

adµ

for a ∈ RN
+ .

Since for an arbitrary a and b in RN , it is not always true, aσ(i)+bσ(i) = (a+b)σ(i)

for every i, OWAw is not always additive.

4 Generalized OWA Operator

Definition 12. Let F = (f1, . . . , fN) where fi : [0, 1]N → [0, 1] for i = 1, . . . , N

are N weighting functions such that
∑N

i=1 fi(x1, . . . , xN ) = 1 for all (x1, . . . , xN ) ∈
[0, 1]N , then the generalized OWA (GOWA) is defined as follows:

GOWAF (a1, . . . , aN ) =
N∑

i=1

wiaσ(i)

where σ defines a permutation of {1, . . . , N} such that aσ(i) ≥ aσ(i+1), and where
wi is defined by wi = fi(a1, . . . , aN )

We have the next proposition, which is similar to Proposition 4.

Proposition 5. Let X := {1, 2, . . . , N} and let F = (f1, . . . , fN ) where fi :
[0, 1]N → [0, 1] for i = 1, . . . , N are N weighting functions such that∑N

i=1 fi(x1, . . . , xN ) = 1 for all (x1, . . . , xN ) ∈ [0, 1]N . For every GOWAF ,
there exists a symmetric fuzzy measure µa satisfying µa({N}) := f1(a) and
µa({1, . . . , i}) := f1(a) + · · · + fi(a) for a ∈ RN , i = 1, 2, . . . , N , such that

GOWAF (a) = (C)
∫

adµa

for a ∈ RN
+ .

Now, we introduce a generalization of Losonczi’s means.

Definition 13. Let F = (f1, . . . , fN) where fi : [0, 1]N → [0, 1] for i = 1, . . . , N

are N weighting functions such that
∑N

i=1 fi(x1, . . . , xN ) = 1 for all (x1, . . . , xN ) ∈
[0, 1]N , then a Generalized Losonczi’s mean is defined as follows:

GLMF(a1, . . . , aN ) = φ−1
( N∑

i=1

wiφ(ai)
)

where wi is defined by wi = fi(a1, . . . , aN )
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Proposition 6. Let X := {1, 2, . . . , N}, let πi : R → R+ and φ : R →
R (φ strictly increasing with inverse φ−1), and let F = (f1, . . . , fN) where
fi : [0, 1]N → [0, 1] for i = 1, . . . , N are N weighting functions such that∑N

i=1 fi(x1, . . . , xN ) = 1 for all (x1, . . . , xN ) ∈ [0, 1]N . Let us define a proba-
bility measure P on 2X by Pa({i}) := πi(a)

�
N
i=1 πi(a)

. Under these conditions, we
have

GLMF ,φ(a) = φ−1
(
CSPa,φ(a)

)
for a = (a1, . . . , aN) ∈ RN .

Applying Theorem 1, we obtain the proposition below.

Proposition 7. Let X := {1, 2, . . . , N} and, let µ be a fuzzy measure on 2X.
Then, the Choquet integral with respect to µ is a GLM with φ(x) = x.

Let ϕ be a real valued function on a closed interval [c, d]. Then, ϕ is said to be
convex if

ϕ(λx + (1 − λ)y) ≤ λϕ(x) + (1 − λ)ϕ(y)

for x, y ∈ [c, d], 0 < λ < 1.
In contrast, ϕ is said to be concave if

ϕ(λx + (1 − λ)y) ≥ λϕ(x) + (1 − λ)ϕ(y)

for x, y ∈ [c, d], 0 < λ < 1.
Let µ be a fuzzy measure on (X,B). Then, since we assume that µ(X) = 1,

we have the next inequalities [13].

(1) If ϕ is convex, then

(C)
∫

ϕ(f)dµ ≥ ϕ

(
(C)
∫

fdµ

)
.

(2) If ϕ is concave, then

(C)
∫

ϕ(f)dµ ≤ ϕ

(
(C)
∫

fdµ

)
.

Applying Proposition 6, we have the next proposition.

Proposition 8. Let X := {1, 2, . . . , N}, let πi : R → R+ and φ : R →
R (φ strictly increasing with inverse φ−1), and let F = (f1, . . . , fN) where
fi : [0, 1]N → [0, 1] for i = 1, . . . , N are N weighting functions such that∑N

i=1 fi(x1, . . . , xN ) = 1 for all (x1, . . . , xN ) ∈ [0, 1]N . Then, let us define the
probability measure P on 2X by Pa({i}) := πi(a)

�
N
i=1 πi(a)

for a = (a1, . . . , aN ) ∈ RN .
Under these conditions, we have

(1) if ϕ is convex, then

(C)
∫

adPa ≤ GLMF ,φ(a).

(2) if ϕ is concave, then

(C)
∫

adPa ≥ GLMF ,φ(a).
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5 On the Relationships between Operators

Proposition 9. The GOWA operator is equivalent to a GLM with φ(x) = x.

Proof. To prove this proposition we will consider first the representation of a
GOWA by a GLM with φ(x) = x. Then, we will consider the reversal case. In
both cases, we consider that the GLM is generated from functions fi and that
the GOWA operator is generated from functions gi.

A GOWA operator generated by gi can be represented by a GLM with φ(x) =
x and where fi is defined as the function gj such that i = σ(j). As fi is a function
of all ai the selection of the appropriate gj is possible within fi. To illustrate
this fact, we define this function fi explictly:

fi(a1, . . . , aN ) =

��������
�������

g1(a1, . . . , aN) if ai ≤ minj �=i aj

g2(a1, . . . , aN) if minj �=i aj ≤ ai ≤ minj1,j2 �=i max(aj1 , aj2)
g3(a1, . . . , aN) if minj1,j2 �=i|j1 �=j2 max(aj1 , aj2) ≤ ai ≤

≤ minj1,j2,j3 �=i max(aj1 , aj2 , aj3)
. . .
gN(a1, . . . , aN) if minj1,...,jN−1 �=i|jr �=js max(aj1 , . . . , aN−1) ≤ ai

A GLM with φ(x) = x and generated by functions fi can be represented by
a GOWA with gj defined by the fi such that i = σ(j). Again, this function can
be defined explicitly from a1, . . . , aN . That is,

gj(a1, . . . , aN ) =

⎧⎪⎪⎨
⎪⎪⎩

f1(a1, . . . , aN ) if mini1,...,ij max(ai1 , . . . , aij ) = a1

f2(a1, . . . , aN ) if mini1,...,ij max(ai1 , . . . , aij ) = a2

. . .
fN (a1, . . . , aN ) if mini1,...,ij max(ai1 , . . . , aij ) = aN

When there exist ai = aj for i �= j, the functions gj should be defined so that
all fi are selected.

��

Yager defined in [24] a generalized OWA. It is one of the generalizations of the
OWA operator.

Definition 14. [24] Let F = (f1, . . . , fN) where fi : [0, 1]N → [0, 1] for i =
1, . . . , N are N weighting functions such that

∑N
i=1 fi(x1, . . . , xN ) = 1 for all

(x1, . . . , xN ) ∈ [0, 1]N , then Yager’s generalized OWA (YGOWA) is defined as
follows:

Y GOWAF (a1, . . . , aN ) =
N∑

i=1

wiaσ(i)

where σ defines a permutation of {1, . . . , N} such that aσ(i) ≥ aσ(i+1), and where
wi is defined by wi = fi(aσ(1), . . . , aσ(N))
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It is obvious from the definition that YGOWA operators are generalizations of
GOWA and neat OWA. However not all GOWA are neat OWA. For example,
using fi(a1, . . . , aN ) = ai we get the GOWA

∑
(aiaσ(i))/

∑
aai , that is not a

neat OWA.
From Proposition 9, the next corollary follows.

Corollary 1. The GLM generalizes the OWA, YGOWA and GOWA.

Now we consider two particular GLM with some interesting properties.

Definition 15. Let the Function Unanimous GLM (FUGLM) and the Dimen-
sional Function Unanimous GLM (DFUGLM) be defined as the GLM with the
following weighting functions:

(i) FUGLM is a GLM with fi(a1, . . . , aN ) = f(ai).
(ii) DFUGLM is a GLM with fi(a1, . . . , aN ) = f(a1, . . . , ai−1, ai+1, . . . , aN ),

where f is a symmetric function.

The following properties hold for such operators.

Proposition 10. FUGLM and DFUGLM operators are symmetric (invariant
to any permutation of the input data).

Proof. We first prove that the FUGLMs are symmetric. To do so, we give the
expression of FUGLM in terms of a GLM. That is,

GLMF(a1, . . . , aN ) = φ−1
( N∑

i=1

wiφ(ai)
)
, (1)

where wi is defined by wi = fi(a1, . . . , aN ) = f(ai). Therefore, FUGLM is
equivalent to

GLMF(a1, . . . , aN ) = φ−1
( N∑

i=1

f(ai)φ(ai)
)

Naturally, any permutation of the ai will lead to the same terms f(ai)φ(ai),
although in different orders.

Now, we prove that the DFUGLM is also symmetric. Taking into account that
wi = fi(a1, . . . , aN ) = f(a1, . . . , ai−1, ai+1, . . . , aN ) with a symmetric function
f , the DFUGLM corresponds to

φ−1
( N∑

i=1

f(a1, . . . , ai−1, ai+1, . . . , aN )φ(ai)
)

(2)

In this case, a permutation s on {1, . . . , N} will lead to:

φ−1
( N∑

i=1

f(as(1), . . . , as(i−1), as(i+1), . . . , as(N))φ(as(i))
)

(3)
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For each ai in Equation 2, the corresponding term in Equation 3 is the φ(as(j))
such that s(j) = i. Naturally, for both Equations 2 and 3, the elements in f
are the same although in a different order. So, as the function f is symmetric,
DFUGLM does not depend on the order. ��

Corollary 2. FUGLM and DFUGLM with φ(x) = x are neat OWA operators.

6 The Losonczi’s OWA

Now, for completeness, we consider Losonczi’s OWA.

Definition 16. Given functions ωi and φ (φ monotonic increasing with inverse
φ−1), the Losonczi’s OWA is defined as follows:

LoOWA(a1, . . . , aN ) = φ−1

(∑N
i=1 ωi(aσ(i))φ(aσ(i))∑N

i=1 ωi(aσ(i)

)

with σ defined as above.

The following result can be proven for this operator.

Proposition 11. The LoOWA is a particular case of the GLM and it general-
izes the OWA operator.

Note that in the definition of the LoOWA, the index i refers to the elements
according to their position in the ordering (the order is determined by the per-
mutation σ). Therefore, the expression ωi(aσ(i)) assigns the ith weight according
to the value that occupies the ith position. Such value corresponds to aσ(i). When
ωi(aσ(i)) is constant, the LoOWA is a quasi-OWA operator (introduced in [7]).

The LoOWA operator can be used to model situations in which importance
is given according to the order an element occupies in the input. This is a case
similar to the OWA operator. In contrast to the case of the OWA, now not only
the order is important but the value itself. The following two examples illustrate
this situation.

– Robot. Let us consider a robot with 5 sensors that measure the distance
to the nearest object. To avoid collisions, we are interested in giving more
importance to small values than to large ones. Nevertheless, when small
values are larger than a given threshold (e.g., one meter), the collision
problem is not so relevant and the weight of the smallest values is dimin-
ished. This situation can be modelled with the following weighting functions
ω1(a) = ω2(a) = ω3(a) = ω4(a) = 0.2 and

ω5(a) =
{

1 if a ≤ 1
0.2 otherwise
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– Compensation. Let us consider the aggregation of 4 criteria so that com-
pensation of two bad values is allowed, but only when they have passed
a given threshold. This situation can be modeled defining ωi as follows
ω4(x) = ω3(x) = 1 if x < 0.5 and ω4(x) = ω3(x) = 0.25 otherwise. All
other ωi are defined by ωi(x) = 0.25 for all x.

In the same way that the WOWA [18] was defined as a generalization of the
weighted mean and the OWA operator so that the weights of both operators
are taken into account, it is straightforward to define the Losonczi’s WOWA
(LoWOWA) in terms of the weighting functions πi and ωi.

The LoWOWA will allow to incorporate in the two examples above the weights
πi used in the Losonczi’c mean. In the case of the robot, the LoWOWA would
permit us to include information on the reliability of the sensors (a reliability that
is a function of the data supplied by the sensor itself). In the case of the criteria,
the use of LoWOWA would permit us to represent the importance of the criteria
(an importance that would depend on the value assigned to the criteria itself).

7 Conclusions

In this paper we have established several relationships between some operators
in the literature. We have focused in the family of means defined by Losonczi’c.
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Abstract. In this paper we deal with the problem of studying the struc-
ture of the polytope of fuzzy measures for finite referential sets. We prove
that the diameter of the polytope of fuzzy measures is 3 for referentials
of 3 elements or more. We also show that the polytope is combinatorial,
whence we deduce that the adjacency graph of fuzzy measures is Hamil-
ton connected if the cardinality of the referential set is not 2. We also
give some results about the facets and edges of this polytope. Finally,
we treat the corresponding results for the polytope given by the convex
hull of monotone boolean functions.

Keywords: Fuzzy measures, monotone boolean functions, diameter,
combinatorial polytopes.

1 Introduction and Basic Concepts

Consider a finite referential set X = {x1, ..., xn} of n elements. The set X plays
the role of the set of criteria in Decision Making, players in Game Theory, indi-
viduals in Welfare Theory, ... Subsets of X are denoted by capital letters A, B, ...
and also by A1, A2, .... In order to avoid hard notation, for singletons {xi} we
will usually omit braces. The set of subsets of X is denoted by P(X).

Definition 1. A non-additive measure [10] or fuzzy measure [26] or ca-
pacity [5] over X is a function µ : P(X) → [0, 1] satisfying

1. µ(∅) = 0 and µ(X) = 1 (boundary conditions).
2. If A ⊆ B then µ(A) ≤ µ(B) (monotonicity).

From a mathematical point of view, fuzzy measures constitute a generalization
of probability distributions in which we remove additivity and monotonicity is
imposed instead. This extension is perfectly justified in many practical situa-
tions, in which additivity is too restrictive. For example, in the field of Decision
Making, models based on Probability, as those from von Neumann and Morgen-
stern [27] or Anscombe and Aumann [3] to cite a few, can lead to inconsistencies
due to uncertainty aversion, as the well-known paradoxes of Ellsberg [11] or Al-
lais [2]. However, models based on fuzzy measures [4,22] are able to handle and
interpret these problems.

V. Torra and Y. Narukawa (Eds.): MDAI 2008, LNAI 5285, pp. 74–85, 2008.
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Fuzzy measures have been also successfully applied to model problems in
Multicriteria Decision Making and Cooperative Games. In the former case, they
allow the decision maker to introduce vetoes and favors in the model [13], as
well as interactions among the different criteria [14]. In the theory of Cooperative
Games, fuzzy measures represent the characteristic function of monotone games,
i.e., the pay-off that each coalition can guarantee for itself; indeed, they are
related to the Shapley value [23]. Other fields related to fuzzy measures are
combinatorics [21], pseudo-boolean functions [16], etc. This versatility of fuzzy
measures has led to a huge number of related works, both from a theoretical and
from a practical point of view.

Note that we need 2n − 2 coefficients in order to define a fuzzy measure. We
will denote the set of all fuzzy measures over X by FM(X). Notice that FM(X)
is a polytope in R

2n−2 (or R
2n

if we include the coordinates for µ(∅) and µ(X)).
On FM(X) we can define a partial order given by µ1 ≤ µ2 if and only if

µ1(A) ≤ µ2(A), ∀A ⊆ X. If µ1 ≤ µ2 or µ2 ≤ µ1 we say that µ1 and µ2 are
comparable.

A problem arising in practice is the identification of the fuzzy measure mod-
elling a certain situation. In [6], we have dealt with the problem of identifying
a fuzzy measure from sample information through genetic algorithms [12]. The
cross-over operator used in the algorithm was the convex combination, possible
as FM(X) is a polytope; this operator allows a reduction in the complexity of
the algorithm. However, the use of this operator has the drawback that the search
region is reduced in each iteration. Then, in order to ensure that the searched
measure is inside the initial region, we need to consider the extreme points of
FM(X) as the initial population. It has been pointed out in [20] that these
extreme points are the set of {0, 1}-valued measures, i.e., the set of monotone
boolean functions of n variables except the constant functions 0 and 1 (that do
not satisfy the boundary conditions). This extremes are also stack filters [28]
and the elements of the free distributive lattice of n generators [24].

Remark that for a {0, 1}-valued measure µ, there are some subsets A satisfying
the following conditions:

µ(A) = 1, µ(B) = 1, ∀B ⊇ A, µ(C) = 0, ∀C ⊂ A

We will call any subset satisfying these conditions a minimal subset for µ. The
set of minimal subsets also forms the qualitative Möbius transform [15]. We will
denote the families of minimal subsets by C,D, and so on. The fuzzy measure
whose minimal subsets are the family C will be denoted by µC. Minimal subsets
are also known as minimal true subsets or minimal primes. If we consider the
lattice (P(X),∪,∩), then a minimal subset for a {0, 1}-valued measure µ can be
equivalently defined as a subset of X such that µ(A) = 1 and whose principal
filter FA and principal ideal IA (see [25]) satisfy

µ(B) = 1, ∀B ∈ FA, µ(B) = 0, ∀B ∈ IA\{A}.
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An example of fuzzy measure that we will use later is the one in which there
is only a minimal subset A ⊆ X, A �= ∅. This measure is given by

uA(B) :=
{

1 if A ⊆ B
0 otherwise

These fuzzy measures are the vertices of a special convex class of fuzzy measures
called belief functions, that appear in the Theory of Evidence [9]. For ∅, we define
the fuzzy measure u∅ by

u∅(B) :=
{

1 if B �= ∅
0 if B = ∅

Note that u∅ follows a different structure to any other uA; indeed, its minimal
subsets are {x1}, ..., {xn} and it is not a belief function.

The set of minimal subsets of a {0, 1}-valued measure determine an antichain
(collections of sets which are pairwise uncomparable with respect to inclusion,
see [1]). Then, the number of vertices of the polytope FM(X) is the number of
different antichains on X .

The number of antichains of a set of cardinality n is known as the n-th
Dedekind number, denoted Dn [8]. The first Dedekind numbers are given in
Table 1 [29].

Table 1. Number of vertices of FM(X)

n Dedekind numbers

1 1
2 4
3 18
4 166
5 7579
6 7828352
7 2414682040996
8 56130437228687557907786

In the values given in this table we have excluded the empty antichain and
the antichain which contains only the empty set, as these cases lead the constant
functions 0 and 1, that are not fuzzy measures. The form of the general term
of this sequence is known [17] but is, however, inefficient. Anyway, from the
quantities in Table 1, it can be seen that we cannot use the vertices of FM(X)
as initial population when n is big (and n = 6 is big!). Then, it is necessary to
consider only a subset of the set {0, 1}-valued measures; however, this set should
be chosen carefully in order to cover a big part of FM(X) with a reduced number
of vertices.

Related to this problem, we have already studied in [18] which are the isome-
tries (functions maintaining distances) on FM(X) and the set of fuzzy measures
remaining invariant for any isometric transformation.
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We have also characterized whether two vertices of FM(X) are adjacent in
[7]. More concretly, we have proved the following:

Proposition 1. If µ1 and µ2 are adjacent vertices of FM(X), then µ1 < µ2 or
µ2 < µ1.

However, this condition is not sufficient.

Definition 2. Let C and D be two collections of minimal sets (antichains). We
say that D is C−decomposable if there exists a partition of D in two non-
empty subsets A and B such that A �⊆ C and B �⊆ C, and if A ∈ A and B ∈ B,
then there exists C ∈ C such that C ⊆ A ∪ B.

The following can be proved:

Theorem 1. Let µD, µC be two vertices of FM(X) such that µD > µC.
Then, µD and µC are adjacent vertices of FM(X) if and only if D is not
C-decomposable.

Let us now turn to the convex hull of monotone Boolean functions.

Lemma 1. The constant functions 0 and 1 are adjacent to any other monotone
Boolean function.

Thus, Theorem 1 can be extended to this polytope, thus obtaining:

Corollary 1. Let µD, µC be two vertices of the set of the convex hull of
monotone Boolean functions such that µD > µC. Then, µD and µC are adjacent
vertices of this polytope if and only if µD is not C-decomposable.

In this paper, we aim to study more properties about the polytope FM(X).
These properties could be interesting in the problem of identification of fuzzy
measures. Moreover, they might shed light on the structure of FM(X), and
could be useful in the search of families of fuzzy measures with additional prop-
erties. Besides, many of the results obtained for FM(X) can be extended to
the convex hull of monotone boolean functions. First, we study the edges of the
polytope; we show that the probability of two measures are adjacent decreases
when the cardinality of X grows. We also study the facets of the polytope. We
show that the diameter of FM(X) is 3 for |X | > 2. Finally, we show that the
graph of FM(X) is Hamilton connected when |X | �= 2. Corresponding results
for monotone Boolean functions are also stated. We finish with the conclusions
and open problems. Detailed proofs of these results can be found in [7].

2 More Results about the Adjacency

In this section, we study other properties of FM(X) related to adjacency. First,
we show that given two monotone boolean functions, it is quite uncommon that
they are adjacent.
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Lemma 2. The probability of two monotone Boolean functions of n variables
taken at random being comparable (with the order relation) tends to zero when
n tends to infinity.

As an immediate consequence of this lemma and Proposition 1, we have the
following result.

Corollary 2. The probability of two monotone Boolean functions of n variables
taken at random being adjacent tends to zero when n tends to infinity.

This result also applies to the extremes of FM(X), since the monotone boolean
functions 0 and 1 are adjacent to any other monotone Boolean function (Lemma
1). This property can be interesting in order to determine subfamilies of vertices
covering a big region of FM(X) and with a small cardinality. For this, it makes
sense to consider families of vertices that are not adjacent to each other; these
families are known as stable sets of vertices.

Some values of the probability of two vertices of FM(X) being adjacent are
given in the following table. In it, we are considering possible pairs of vertices
with replacement, so that for a vertex µ, the pair (µ, µ) is possible; for two
different vertices µ1, µ2, pairs (µ1, µ2) and (µ2, µ1) are considered once and not
twice. Similar results can be obtained random choice without replacement, as
Lemma 2 and Corollary 2 also hold in this situation.

Table 2. Probabilities of two vertices being adjacent for different cardinalities

n 2 3 4 5

Probability 0.5 0.45062 0.23015 0.07189

3 The Diameter of FM(X)

Definition 3. Given a polytope F , the graph (of adjacency) of F is defined
by the graph whose nodes are the vertices of F and whose edges join two nodes
if and only if they are adjacent.

Consider the graph of FM(X). Let us define the distance d(µ1, µ2) between two
extremes µ1, µ2 of FM(X) as the number of edges of the shortest path between
them in this graph. We have shown in the previous corollary that the distance
between two vertices is greater than 1 with probability tending to 1 when |X |
tends to infinity. Now, we will study the diameter of the graph, i.e. the maximum
distance between two extremes.

Lemma 3. If |X | > 2 and µ1, µ2 are two extremes of FM(X) such that both
µ1 and µ2 are either adjacent to uX or to u∅ (not necessarily both adjacent to
the same) then d(µ1, µ2) ≤ 3.
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Proof: It is obvious because uX and u∅ are adjacent when |X | > 2. ��
Note that for |X | = 2, uX and u∅ are not adjacent as {{x1}, {x2}} determine a
{X}−decomposition (see Theorem 1). For |X | = 1, uX = u∅.

Let us now study the distance when we consider extremes that are not adjacent
to uX nor u∅. We start characterizing these extremes.

Lemma 4. If |X | > 3 and µ is an extreme of FM(X) which is neither adjacent
to uX nor to u∅, then there exists xi ∈ X such that µ can be written as

µ =

⎛
⎝∨

j �=i

u{xi,xj}

⎞
⎠ ∨ uX\{xi}.

Lemma 5. Suppose |X | > 3. If µi :=
(∨

j �=i u{xi,xj}
)

∨ uX\{xi}, ∀xi ∈ X, then
d(µi, µ) ≤ 3 for any µ extreme point of FM(X).

Sketch of proof: It is easy to check that, for all i and j, the extremes µi and
µj are both adjacent to the extreme uX\{xi} ∨uX\{xj}. Thus d(µi, µj) = 2 since
µi and µj are not adjacent (neither µi > µj nor µj > µi). Now, remark that µi

is also adjacent to uX\{xi} which, in turn, is adjacent to uX and to u∅. Hence,
d(µi, uX) = d(µi, u∅) = 2 and the result follows from the previous lemma. ��
Thus, the diameter of FM(X) when |X | > 3 is at most 3. In next result we will
prove that it is indeed 3.

Lemma 6. Assume |X | > 3. There exist vertices in FM(X) whose distance is
at least 3.

Sketch of proof: It suffices to consider µ the extreme point of FM(X) whose
minimal subsets are {x1, x2} and X\{x1, x2} and µ′ the extreme point whose
minimal subsets are {Ai, Bi}n

i=3 with Ai := {x1, xi}, Bi := {x2, xi}. Note that
they are not comparable, whence d(µ, µ′) > 1. It can be proved that it is not
possible to find another extreme point µ′′ being adjacent to both µ and µ′.
Therefore, d(µ, µ′) ≥ 3. ��
Joining all these results, we can state the following Theorem.

Theorem 2. If |X | ≥ 3, then the diameter of the graph of adjacency of the
extremes of FM(X) is exactly 3.

For |X | = 3, we can study the distance of two extreme points of FM(X) in
Figure 1 (which has been drawn with the help of the Pigale computer program1).
We represent each vertex by means of its minimal sets. Also, we use i instead of
xi. Thus, {1, 2}, {3} stands for (ux1 ∧ ux2) ∨ ux3 , and so on.

In this figure, we can define two different families of vertices: let us denote by
V1 the nine vertices whose minimal elements are {{i}}, {{i, j}} or {{i}, {j}} for
1 PIGALE: Public Implementation of a Graph Algorithm Library and Editor, H. de

Fraysseix and P. Ossona de Mendez. http://pigale.sourceforge.net/
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Fig. 1. Adjacency of vertices of FM(X) for |X| = 3

i, j = 1, 2, 3; the rest of vertices except the three whose minimal elements are
{{1, 2, 3}}, {{1}, {2}, {3}} and {{1, 2}, {1, 3}, {2, 3}} are included in V2. Vertices
in V1 are simultaneously adjacent to {{1, 2, 3}} and {{1}, {2}, {3}}, and vertices
in V2 are adjacent to {{1, 2}, {1, 3}, {2, 3}}.Thus, all vertices in V2 are at distance
2 or less among them, and all vertices in V1 are at distance 2 or less among them.
Also, any vertex in V1 is adjacent to at least one vertex in V2 (and vice versa),
so vertices in V1 and V2 are at distance 3 at most. Since {{1, 2}, {1, 3}, {2, 3}}
is adjacent to all vertices in V2, it is at distance at most 2 of all vertices in V1.
Similarly, {{1, 2, 3}} and {{1}, {2}, {3}} are at distance at most 2 of all vertices
in V2. Finally, the distance between {{1, 2}, {1, 3}, {2, 3}} and {{1, 2, 3}} is 3,
the distance between {{1, 2}, {1, 3}, {2, 3}} and {{1}, {2}, {3}} is again 3, and
the distance between {{1, 2, 3}} and {{1}, {2}, {3}} is 1.

For |X | = 1, the diameter of FM(X) is 0, and for |X | = 2, it is 2. Notice that
in the convex hull of all monotone boolean functions, Lemma 6 does not hold,
as any measure is adjacent to the constant functions 0 and 1. In this case, the
diameter is always 2, except for |X | = 1, whose diameter is 1 (note that there
are three measures in this case: the constant 0, the constant 1 and the function
whose value is 0 for ∅ and 1 for X ; all are adjacent to each other).

Moreover, the following holds:

Theorem 3. The probability that an extreme point of FM(X) chosen at ran-
dom is adjacent to u∅ tends to 1 when n = |X | tends to infinity.

From this theorem, we can derive the following results:

Corollary 3. The probability that an extreme point of FM(X) chosen at ran-
dom is adjacent to uX tends to 1 when |X | tends to infinity.
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Corollary 4. The probability that two extreme points µ, µ′ of FM(X) chosen
at random satisfy d(µ, µ′) = 2 tends to 1 when n = |X | tends to infinity.

As a consequence, the probability that two extreme points µ, µ′ of FM(X)
chosen at random satisfy d(µ, µ′) = 3, i.e. they are at maximal distance, tends
to 0 when |X | tends to infinity. Table 3 shows the probability of the different
distances for different values of n. Distance 0 appears when µ = µ′.

Table 3. Probabilities of different distances for FM(X)

n P (d(µ, µ′) = 0) P (d(µ, µ′) = 1) P (d(µ, µ′) = 2) P (d(µ, µ′) = 3) Dn Pairs at distance 1

2 0.25 0.5 0.25 0 4 8
3 0.05555 0.45062 0.44444 0.04938 18 146
4 0.00602 0.23015 0.75091 0.01292 166 6342
5 0.00013 0.07189 0.92797 2.78 ∗ 10−6 7579 4129670

From the last two columns of this table we can see that the number of adjacent
vertices for each extreme point is not the same except for the case |X | = 2.
Otherwise, the number pairs that are at distance one should be divisible by the
number of vertices Dn, and this does not hold for n ≥ 3.

Notice that if we embed FM(X) in FM(X ∪ {xn+1}), the distance between
two measures µ1, µ2 ∈ FM(X) and the distance of the corresponding embedded
measures µ′

1, µ
′
2 ∈ FM(X ∪ {xn+1}), where µ′

1 and µ′
2 are defined by

µ′
i(A) :=

{
µi(A) if A ⊆ X

µi(A\{xn+1}) if xn+1 ∈ A

can be different.
On the other hand, it can be seen that the minimal subsets for µi and µ′

i are
the same. Now, the following can be shown:

Lemma 7. Consider µ1 and µ2 two monotone boolean functions such that there
exists xi ∈ X satisfying that it does not belong to any minimal subset of µ1 and
µ2. Then, d(µ1, µ2) ≤ 2.

Proof: If µ1 and µ2 are adjacent, then d(µ1, µ2) = 1 and we are done. Suppose
then that they are not adjacent; then, they are adjacent to uX as the families of
minimal subsets cannot be {X}-decomposed. ��
As a corollary we obtain the following result:

Corollary 5. If we consider the polytope FM(X) as a sub-polytope of FM(X∪
{xn+1}), then the measures in FM(X) whose distance is 3 are at distance 2 in
FM(X ∪ {xn+1}).
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4 Some Results about the Facets of FM(X)

Let us now study the facets of FM(X). More concretly, we address now the
problem of obtaining the number of vertices in a facet of the polytope. The
facets of a polytope are given by the points satisfying with equality a non-dummy
constraint. The constraints defining FM(X) are

µ(A) − µ(A \ xi) ≥ 0, ∀∅ �= A ⊆ X, xi ∈ A.

Lemma 8. There are not dummy constraints in FM(X).

Then, given the facet defined by µ(A) = µ(A\xi), for some ∅ �= A ⊆ X and
xi ∈ A, the vertices in it are those satisfying either µ(A) = µ(A\xi) = 0 or
µ(A) = µ(A\xi) = 1, except when A is a singleton, where the vertices are given
by those measures such that µ(A) = 0, and when A = X, where the vertices are
those measures satisfying µ(X\xi) = 1.

Lemma 9. Consider A, B ⊂ X such that |A| = |B|. Then, the number of ver-
tices in any facet defined by µ(A) = µ(A\xi), xi ∈ A is the same as in any facet
defined by µ(B) = µ(B\xj), xj ∈ B.

Lemma 10. Consider A, B ⊂ X such that |B| = |X |−|A|+1. Then, the number
of vertices in any facet defined by µ(A) = µ(A\xi), xi ∈ A is the same as in any
facet defined by µ(B) = µ(B\xj), xj ∈ B.

For |A| = 1, the following can be stated:

Lemma 11. Suppose A = {xi}. The number of vertices in the corresponding
facet of FM(X) is Dn − Dn−1 − 1.

Joining Lemma 10 and Lemma 11, we conclude that the number of vertices in
the facet defined by µ(X\xi) = 1 is Dn − Dn−1 − 1.

From Lemma 9, we know that the number of vertices in a facet only depends
on the cardinality of the set defining it. Let us denote Ai := {x1, . . . , xi}, i =
1, . . . , n and A0 := ∅. We will call the facet defined by µ(Ai) = µ(Ai−1), i =
1, . . . , n, the Ai-facet. The number of vertices in the Ai-facet will be denoted by
Fi. From Lemmas 10 and 11, we already know that F1 = Fn = Dn−Dn−1−1 and
that Fi = Fn−i+1 for i = 1, . . . , n. The following result shows further relationship
between the Fi numbers and the Dedekind numbers.

Theorem 4. For every n it holds

F1 + F2 + . . . + Fn = (n − 1)Dn.

In Table 4 we give the exact values of the Fi numbers for some values of |X |. The
values for |X | = 2, 3, 4 can be deduced from the previous results. A computer
program was implemented to explicitly count the vertices in each facet and
supply the values for |X | = 5, 6.
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Table 4. Values of Fi

F1 F2 F3 F4 F5 F6

|X| = 2 2 2 - - - -
|X| = 3 13 10 13 - - -
|X| = 4 147 102 102 147 - -
|X| = 5 7412 5739 4014 5739 7412 -
|X| = 6 7820772 7240284 4509824 4509824 7240284 7820772

5 FM(X) Is Combinatorial

Finally, let us study a final property of the graph of FM(X).

Definition 4. [19] A convex polytope is combinatorial if it satisfies the fol-
lowing conditions:

– All its vertices are {0, 1}-valued.
– If vertices x and y are not adjacent, then there exist two other vertices u and

v such that x + y = u + v.

The following can be proved:

Proposition 2. FM(X) is a combinatorial polytope.

By Lemma 1, the result also holds for the convex hull of all monotone boolean
functions.

A graph is Hamilton connected if every pair of distinct nodes is joined by
a Hamilton path. For combinatorial polyhedra, the following can be shown:

Theorem 5. [19] Let G be the graph of a combinatorial polytope. Then G is
either a hypercube or else is Hamilton connected.

Then, the following holds:

Corollary 6. The graph of FM(X) is Hamilton connected for |X | �= 2.

Proof: Remark that FM(X) is a hypercube for n = 1 and n = 2. For n = 1,
the graph of FM(X) is trivially Hamilton connected. Moreover, it is easy to see
that the graph is not Hamilton connected for n = 2.

If n > 2, it suffices from Theorem 5 to show that the graph of FM(X) is not
a hypercube. But this holds, as the hypercube of dimension n has diameter n;
from Theorem 3, the diameter of FM(X) is 3 if |X | ≥ 3. Thus, if FM(X) is a
hypercube, it must be the 3-dimensional one. On the other hand, the hypercube
of dimension 3 has 8 vertices, and this is not a Dedekind number. ��
For the convex hull of monotone Boolean functions, we can adapt the previous
proof to conclude that the corresponding graph is Hamilton connected for any
cardinality. For |X | = 2, note that it is not a hypercube, as there are two more
functions than in the case of fuzzy measures.
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6 Conclusions and Open Problems

In this paper we have studied some properties of the polytope FM(X). Many
of the results that we have obtained apply also to the convex hull of monotone
Boolean functions.

We have studied the edges and the facets of FM(X). We have proved that
the probability of two vertices chosen at random are adjacent tends to 0 when
the cardinality of X grows. For the facets, we have proved that the number of
vertices in a facet depends on the cardinality of the subset defining the facet.
We have also shown that there seems to be a duality relationship for the facets.

We have proved that FM(X) has diameter 3 when |X | ≥ 3 and that two
vertices chosen at random are at distance 2 with probability tending to 1 when
|X | tends to infinity.

Finally, we have shown that FM(X) is combinatorial, whence we have con-
cluded that the graph of this polytope is Hamilton connected for |X | �= 2.

We think that these results can shed light on the structure of FM(X) and
the convex hull of monotone Boolean functions. Moreover, these results could
be interesting in the problem of identifying a fuzzy measure. For example, if
we consider the identification through genetic algorithms, we know that the set
of vertices cannot be used as the initial population [6]. However, it could be
interesting to study the performance of the algorithm if we consider a stable
subset of vertices.

Finally, there are some problems that could be interesting to study related to
FM(X). In this sense, it might be interesting to study more deeply the number
of vertices in a facet. Another problem is to determine the number of adjacent
vertices to a given extreme point of FM(X). For this, more research is needed.
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Abstract. In group decision making problems, a natural question in the
consensus process is how to measure the closeness among experts’ opin-
ions in order to obtain the consensus level. To do so, different approaches
have been proposed. For instance, several authors have introduced hard
consensus measures varying between 0 (no consensus or partial consen-
sus) and 1 (full consensus or complete agreement). However, consensus as
a full and unanimous agreement is far from being achieved in real situa-
tions. So, in practice, a more realistic approach is to use softer consensus
measures, which assess the consensus degree in a more flexible way. The
aim of this paper is to identify the different existing approaches to com-
pute soft consensus measures in fuzzy group decision making problems.
Additionally, we analyze their advantages and drawbacks and study the
future trends.

Keywords: group decision making, consensus process, soft consensus
measures.

1 Introduction

In a classical Group Decision Making (GDM) situation there is a problem to
solve, a solution set of possible alternatives, and a group of two or more experts,
who express their opinions about this solution set of alternatives. These problems
consist in multiple individuals interacting to reach a decision. Each expert may
have unique motivations or goals and may approach the decision process from a
different angle, but have a common interest in reaching eventual agreement on
selecting the “best” option(s) [5,8,24]. To do this, experts have to express their
preferences by means of a set of evaluations over a set of alternatives.

In a GDM problem, there are two processes to apply before obtaining a final
solution [9,13,14,15,18,22,23]: the consensus process and the selection process (see
Figure 1). The former consists in how to obtain the maximum degree of consensus
or agreement between the set of experts on the solution set of alternatives.
Normally, the consensus process is guided by a human figure called moderator
[6,9,22] who is a person that does not participate in the discussion but knows
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c© Springer-Verlag Berlin Heidelberg 2008



On Consensus Measures in Fuzzy Group Decision Making 87

the agreement in each moment of the consensus process and is in charge of
supervising and addressing the consensus process toward success, i.e., to achieve
the maximum possible agreement and to reduce the number of experts outside
of the consensus in each new consensus round. The latter refers to how to obtain
the solution set of alternatives from the opinions on the alternatives given by the
experts. Clearly, it is preferable that the set of experts achieves a great agreement
among their opinions before applying the selection process.

At the beginning of every GDM problem, the set of experts have diverging
opinions, then, the consensus process is applied, and in each step, the degree
of existing consensus among experts’ opinions is measured. If the consensus
degree is lower than a specified threshold, the moderator would urge experts
to discuss their opinions further in an effort to bring them closer. Otherwise,
the moderator would apply the selection process in order to obtain the final
consensus solution to the GDM problem. In such a way, a GDM problem may
be defined as a dynamic and iterative process, in which the experts, via the
exchange of information and rational arguments, agree to update their opinions
until they become sufficiently similar, and then, the solution alternative(s) is/are
obtained. In this paper, we focus on the consensus process.

Fig. 1. Resolution process of a GDM problem

A natural question in the consensus process is how to measure the closeness
among experts’ opinions in order to obtain the consensus level. To do so, different
approaches have been proposed. For instance, several authors have introduced
hard consensus measures varying between 0 (no consensus or partial consen-
sus) and 1 (full consensus o complete agreement) [2,3,26,27]. Thus, using hard
consensus measures, in [2,3], a distance from consensus as a difference between
some average preference matrix and one of several possible consensus preference
matrices is determined. In [26] some measures of attitudinal similarity between
individuals that is an extension of the classical Tanimoto coefficient are derived.
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And, in [27], a consensus measure based on a-cuts of the respective individual
fuzzy preference matrices is derived. However, consensus as a full and unanimous
agreement is far from being achieved in real situations, and even if it is, in such
a situation, the consensus reaching process could be unacceptably costly. So, in
practice, a more realistic approach is to use softer consensus measures [19,20,21],
which assess the consensus degree in a more flexible way, and therefore reflect the
large spectrum of possible partial agreements, and guide the consensus process
until widespread agreement (not always full) is achieved among experts. The
soft consensus measures are based on the concept of coincidence [11], measured
by means of similarity criteria defined among experts’ opinions.

The aim of this paper is to identify the different existing approaches in the lit-
erature to compute soft consensus measures in fuzzy GDM problems and analyze
their advantages and drawbacks. To do so, firstly, we identify three different co-
incidence criteria to compute soft consensus measures: strict coincidence among
preferences, soft coincidence among preferences and coincidence among solu-
tions. Then, we analyze their application in consensus processes of fuzzy GDM
problems and study their drawbacks and advantages. Furthermore, we describe
the new advanced approaches, which use the above coincidence criteria, allowing
to generate recommendations to help experts change their opinions in order to
obtain the highest degree of consensus possible and adapt the consensus process
to increase the agreement and to reduce the number of experts’ preferences that
should be changed after each consensus round.

In order to do this, the paper is set up as follows. In Section 2, we present
the different approaches proposed in the literature to obtain soft consensus mea-
sures in fuzzy GDM problems. In Section 3, we discuss their advantages and
drawbacks. The new advanced approaches are shown in Section 4. Finally, some
concluding remarks are pointed out in Section 5.

2 Approaches to Obtain Soft Consensus Measures in
Fuzzy GDM Problems

In this section, we analyze different existing approaches in the literature to obtain
soft consensus measures in a fuzzy GDM problem.

As aforementioned, soft consensus measures are based on the coincidence con-
cept [11], i.e., measuring the existing coincidence among expert’s opinions by
means of similarity criteria. In the literature, we identify three different ap-
proaches of coincidence concept to compute soft consensus measure:

1. Consensus models based on strict coincidence among preferences. In this
case, similarity criteria among preferences are used to compute the coinci-
dence concept. It is assumed only two possible results: the total coincidence
(value 1) or null coincidence (value 0). Some examples of this approach are
the following: In [19], assuming fuzzy preference relations to represent ex-
perts’ preferences, the first consensus model based on strict coincidence was
defined. Given a particular alternative pair and two experts, if their prefer-
ences are equal, then they are in agreement (value 1), and otherwise they
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are in disagreement (value 0). Then consensus measures are calculated across
the global set of the alternatives in a hierarchical pooling process from the
coincidence measured on experts’ preferences and using the fuzzy majority
concept represented by a linguistic quantifier [29]. In [9,10], different con-
sensus measures based on strict coincidence were presented assuming that
experts’ preferences are provided by means of linguistic preference relations.
Applying the strict coincidence on preferences provided by the experts for
each alternative pair, the expert group is divided into subsets, one subset for
each possible linguistic label used to quality the preference on the alternative
pair. Then, using the cardinalities of the subsets of experts three kinds of
consensus measures are defined, each one associated to the three different
levels of representation of a preference relation, alternative pair, individual
alternative and global relation.

2. Consensus models based on soft coincidence among preferences. As above,
similarity criteria among preferences are used to compute the coincidence
concept but, in this case, a major number of possible coincidence degrees is
considered. It is assumed that the coincidence concept is a gradual concept
which could be assessed with different degrees defined in the unit interval
[0,1]. Some examples of this approach are the following: In [19], a first consen-
sus model based on soft coincidence was also defined. But in this case, given
a particular alternative pair and two experts, the coincidence among their
preference is measured using a closeness function s : [0, 1] → [0, 1]. In [20,21],
some soft consensus measures defined as extensions of those shown in [19] are
introduced, considering GDM problems with heterogeneous set of alterna-
tives and heterogeneous groups of experts, respectively. In [7], an extension
of soft consensus models defined in [19,20,21] is presented, which consists
in the computation of consensus measures using the ordered weighted aver-
aging (OWA) operator [28]. In [4], a soft consensus model for multi-criteria
GDM problems defined in a ordinal fuzzy linguistic approach was defined. In
this case, coincidence values are obtained by means of a linguistic similarity
function defined directly on linguistic assessments given on the alternatives.
In [11], the fuzzification of soft coincidence concept was presented. The soft
coincidence is defined in each alternative pair of a linguistic preference re-
lation as a fuzzy set defined on the set of expert pairs and characterized
by closeness observed among their preferences. The closeness among pref-
erences is established by means of ad-hoc closeness table defined among all
the possible labels of linguistic term set used to represent the preferences.
In [14], a soft consensus model is presented to deal with GDM problems
in a multi-granular fuzzy linguistic context. As in [9,10,11], three kinds of
soft consensus measures are considered. The soft coincidence among multi-
granular linguistic preferences is obtained using a similarity function defined
on transformation of such preferences in a basic linguistic term set. In [16],
as in [9,10,11,14], a soft consensus model based on three consensus measures
was proposed. In this case, experts provide their preferences by means of in-
complete fuzzy preference relations assessed in [0,1] and the soft coincidence
is defined using a similarity function among preferences in [0,1].
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3. Consensus models based on coincidence among on solutions. In this case,
similarity criteria among the solutions obtained from the experts’ prefer-
ences are used to compute the coincidence concept and different degrees
assessed in [0,1] are assumed [1,13]. Basically, we compare the positions of
the alternatives between the individual solutions and the collective solution,
which allows to know better the real consensus situation in each moment of
the consensus process. Some examples of this approach are the following: In
[13] was defined the first consensus model based on the measuring the coin-
cidence degree between individual solutions and collective solution. In [13],
it is assumed that experts represent their preferences by means of different
elements of representation (relation, ordering and utilities) and then it is not
possible to compare preferences. To overcome this problem authors propose
to compare solutions to obtain the coincidence degrees. This means that the
first step of consensus process to measure coincidence degrees is to apply a
selection process to obtain a temporary collective solution and the temporary
individual solutions, and measure the closeness among them. An important
characteristic of this consensus model was the introduction of a recommen-
dation system to aid experts to change their preferences in the consensus
reaching process and, in such a way, to substitute the moderator’s actions.
In [1], a similar consensus model is presented but assuming heterogeneous
GDM problems, i.e., experts with different importance degrees.

3 Discussion

In this section, some important aspects of the use of the different approaches to
obtain soft consensus degrees within the decision making process are analyzed.
To do so, we show the advantages and drawbacks of each one of them.

1. Strict coincidence among preferences. The advantage of this approach is
that the computation of the consensus degrees is simple and easy because it
assumed only two possible values: 1 if the opinions are equal and otherwise
a value of 0. However, the drawback of this approach is that the consensus
degrees obtained do not reflect the real consensus situation because it only
assigns values of 1 or 0 when comparing the experts’ opinions, and, for
example, we obtain a consensus value 0 for two different preference situations
as (very high, high) and (very high,low), when clearly in the second case the
consensus value should be lower than in the first case.

2. Soft coincidence among preferences. The advantage of this approach is that
the consensus degrees obtained are similar to the real consensus situation be-
cause they are obtained using similarity functions that assign values between
0 and 1, which are not so strict as in the above approach. The drawback of
this approach is that the computation of the consensus degrees is more diffi-
cult than in the above approach because we need to define similarity criteria
[14,16].

3. Coincidence among solutions. The advantage of this approach is that the
consensus degrees are obtained comparing not the opinions or choice de-
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grees but the position of the alternatives in each solution, what allows us to
reflect the real consensus situation in each moment of the consensus reach-
ing process. The drawback of this approach is that the computation of the
consensus degrees is more difficult than in the above approaches because
we need to define similarity criteria and it is necessary to apply a selection
process before obtaining the consensus degrees.

4 New Advanced Approaches

In this section, we describe the new advanced soft consensus approaches which
have been developed using the above concepts of coincidence. These approaches
allow to generate recommendations to help experts change their opinions in
order to obtain the highest degree of consensus possible [13,14,16] and adapt
the consensus process to increase the agreement and to reduce the number of
experts’ preferences that should be changed after each consensus round [25].

4.1 Approaches Generating Recommendations to Help Experts

These approaches generate simple and easy rules to help experts change their
opinions in order to obtain the highest degree of consensus possible. To do so,
they are based on two consensus criteria, consensus degrees indicating the agree-
ment between experts opinions and proximity measures used to find out how far
the individual opinions are from the group opinion. Thus, proximity measures are
used in conjunction with the consensus degrees to build a guidance advice sys-
tem, which acts as a feedback mechanism that generates advice so that experts
can change their opinions. Furthermore, these consensus criteria are computed
at the three different levels of representation of information of a preference re-
lation: pair of alternatives, alternative, and relation. It allows us to know the
current state of consensus from different viewpoints, and therefore, to guide more
correctly the consensus reaching processes. Thus, as these measures are given on
three different levels for a preference relation, this measure structure will allow
us to find out the consensus state of the process at different levels. For example,
we will be able to identify which experts are close to the consensus solution, or
in which alternatives the experts are having more trouble to reach consensus.

So, the computation of the consensus degrees assuming that experts provide
their preferences by means of fuzzy preference relations, P h = (ph

ij), is carried
out as follows. First, for each pair of experts (eh, el) (h = 1, . . . , m − 1, l =
h + 1, . . . , m) a similarity matrix SMhl = (smhl

ik) is defined. To do it, one of
the above coincidence criteria can be used. Then, a collective similarity matrix,
SM = (smik), is obtained by aggregating all the similarity matrices using an
aggregation function φ

smik = φ(smhl
ik, h = 1, . . . , m − 1, l = h + 1, . . . , m). (1)

Once the similarity matrices are computed, the consensus degrees are calcu-
lated at the three different levels.
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1. Level 1. Consensus degree on pairs of alternatives. The consensus degree
on a pair of alternatives (xi, xk), called copik, is defined to measure the
consensus degree amongst all the experts on that pair of alternatives. In this
case, this is expressed by the element of the collective similarity matrix SM ,
i.e.,

copik = smik. (2)
The closer copik to 1, the greater the agreement amongst all the experts on
the pair of alternatives (xi, xk). This measure will allow the identification of
those pairs of alternatives with a poor level of consensus.

2. Level 2. Consensus degree on alternatives. The consensus degree on alter-
native xi, denoted cai, is defined to measure the consensus degree among all
the experts on that alternative:

cai =

∑n
k=1;k �=i (copik + copki)

2n − 2
. (3)

These values can be used to propose the modification of preferences asso-
ciated to those alternatives with a consensus degree lower than a minimal
consensus threshold γ.

3. Level 3. Consensus degree on the relation. The consensus degree on the
relation, called cr is defined to measure the global consensus degree amongst
all the experts’ opinions. It is computed as the average of all the consensus
degrees on the alternatives, i.e.,

cr =
∑n

i=1 cai

n
. (4)

This is the value used to control the consensus situation.

Once consensus degrees are calculated, the proximity measures are obtained.
To compute them for each expert, we need to obtain the collective preference
relation, P c = (pc

ik), which summarizes preferences given by all the experts and
is calculated by means of the aggregation of the set of individual preference
relations {P 1, . . . , Pm} as follows

pc
ik = φ(p1

ik, . . . , pm
ik). (5)

with φ an aggregation operator.
Once P c is obtain, we can compute the proximity measures carrying out the

following two steps:

1. For each expert, eh, a proximity matrix, PMh = (pmh
ik), is obtained using

one of the above coincidence criteria.
2. Computation of proximity measures at three different level:

(a) Level 1. Proximity measure on pairs of alternatives. The proximity mea-
sure of an expert eh on a pair of alternatives (xi, xk) to the group’s one,
called pph

ik, is expressed by the element (i, k) of the proximity matrix
PMh:

pph
ik = pmh

ik. (6)
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(b) Level 2. Proximity measure on alternatives. The proximity measure
of an expert eh on an alternative xi to the group’s one, called pah

i , is
calculated as follows:

pah
i =

∑n
k=1,k �=i pph

ik

n − 1
. (7)

(c) Level 3. Proximity measure on the relation. The proximity measure of
an expert eh on his/her unbalanced fuzzy linguistic preference relation to
the group’s one, called prh, is calculated as the average of all proximity
measures on the alternatives:

prh =
∑n

i=1 pah
i

n
. (8)

The meaning of the proximity measures are the following: if they are close
to 1, then they have a positive contribution for the consensus to be high, while
if they are close to 0, then they have a negative contribution to the consensus.
Therefore, we can use them to provide advice to the experts to change their
opinions and to find out which direction that change has to follow in order to
obtain the highest degree of consensus possible.

Once proximity measures are calculated, the recommendations are generated.
The production of advice to achieve a solution with the highest degree of con-
sensus possible is carried out in two steps [14]: Identification rules and Direction
rules.

1. Identification rules (IR). We must identify the experts, alternatives and
pairs of alternatives that are contributing less to reach a high degree of
consensus and, therefore, should participate in the change process.

(a) Identification rule of experts (IR.1). It identifies the set of experts that
should receive advice on how to change some of their preference values.
This set of experts, called EXPCH , that should change their opinions
are those whose satisfaction degree on the relation is lower than the
minimum consensus threshold γ. Therefore, the identification rule of
experts, IR.1, is the following:

EXPCH = {eh | prh < γ} (9)

(b) Identification rule of alternatives (IR.2). It identifies the alternatives
whose associated assessments should be taken into account by the above
experts in the change process of their preferences. This set of alternatives
is denoted as ALT . The identification rule of alternatives, IR.2, is the
following:

ALT = {xi ∈ X | cai < γ} (10)

(c) Identification rule of pairs of alternatives (IR.3). It identifies the particu-
lar pairs of alternatives (xi, xk) whose respective associated assessments
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ph
ik the expert eh should change. This set of pairs of alternatives is de-

noted as PALT h. The identification rule of pairs of alternatives, IR.3, is
the following:

PALT h = {(xi, xk) | xi ∈ ALT ∧ eh ∈ EXPCH ∧ pph
ik < γ} (11)

2. Direction rules (DR). We must find out the direction of the change to be
recommended in each case, i.e., the direction of change to be applied to the
preference assessment ph

ik, with (xi, xk) ∈ PALT h. To do this, we define the
following four direction rules.
(a) DR.1. If ph

ik > pc
ik, the expert eh should decrease the assessment associ-

ated to the pair of alternatives (xi, xk), i.e., ph
ik.

(b) DR.2. If ph
ik < pc

ik, the expert eh should increase the assessment associ-
ated to the pair of alternatives (xi, xk), i.e., ph

ik.

4.2 Adaptive Approaches

These approaches are based on a refinement process of the consensus process
that allows to increase the agreement and to reduce the number of experts’
preferences that should be changed after each consensus round. The refinement
process adapts the search for the furthest experts’ preferences to the existent
agreement in each round of consensus. So, when the agreement is very low (initial
rounds of the consensus process), the number of changes of preferences should be
bigger than when the agreement is medium or high (final rounds) (see Figure 2).

Fig. 2. Reduction of the number of changes of preferences into the consensus process

These approaches consider that in the first rounds of the consensus process,
the agreement is usually very low and it seems logic that many experts’ prefer-
ences should be changed. However, after several rounds, the agreement should
have improved and then just the furthest experts’ preferences from the collec-
tive preference should be changed. It involves that the procedure to search for
the furthest experts’ preferences from collective preference should be different
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according to the achieved agreement in each round. Each Preference Search Pro-
cedure (PSp) should have a different behavior and should return a different set
of preferences that each expert should change in order to improve the agreement
in the next consensus round. In consequence of the adaptation of the consensus
process to the existent agreement in each round, the number of changes of prefer-
ences suggested to experts after each consensus round will be smaller according
to the favorable evolution of the level of agreement.

In this way, in the consensus process, if the agreement among experts is low,
i.e, there are a lot of experts’ preferences with different assessments, the number
of experts which should change their preferences in order to make them closer
to collective preference should be great. However, if the agreement is medium or
high, it means that the majority of preferences are similar and therefore there
exist a low number of experts’ preferences far from the collective preference.
In this case, only these experts should change them in order to improve the
agreement. Keeping in mind this idea, these approaches propose distinguishing
among three level of agreement: very low, low and medium consensus. Each level
of consensus involves to carry out the search for the furthest preferences in a
different way. So when the consensus degree cr is very low, these approaches
will search for the furthest preferences on all experts, while if cr is medium, the
search will be limited to the furthest experts. To do so, these approaches carries
out three different PSps: PSp for very low consensus, PSp for low consensus
and PSp for medium consensus. The possibility of carrying out different PSps
according to the existent consensus degree in each round defines the adaptive
character of our model.

5 Concluding Remarks

In this paper we have identified the different existing approaches to compute soft
consensus measures in fuzzy group decision making problems and analyzed their
advantages and drawbacks. Additionally, we have described the new advanced
approaches allowing to generate recommendations to help experts change their
opinions in order to obtain the highest degree of consensus possible and adapt
the consensus process to increase the agreement and to reduce the number of
experts’ preferences that should be changed after each consensus round.

In the future, we think to study as to apply these consensus models in decision
making problems with incomplete information and using information domains
which do not allow to define similarity criteria among preferences in a direct
way, as for example the unbalanced fuzzy linguistic information [12,17].

Acknowledgements

This work has been supported by the Research Projects TIN2007-61079 and
SAINFOWEB-PAI00602.



96 F.J. Cabrerizo et al.

References

1. Ben-Arieh, D., Chen, Z.: Linguistic-Labels Aggregation and Consensus Measure for
Autocratic Decision Making using Group Recommendations. IEEE Transactions
on Systems, Man and Cybernetics. Part A: Systems and Humans 36(3), 558–568
(2006)

2. Bezdek, J., Spillman, B., Spillman, R.: Fuzzy Measures of Preferences and Consen-
sus in Group Decision Making. In: Proc. 1977 IEEE Conf. on Decision and Control,
pp. 1303–1309 (1977)

3. Bezdek, J., Spillman, B., Spillman, R.: A Fuzzy Relation Space for Group Decision
Theory. Fuzzy Sets and Systems 1, 255–268 (1978)

4. Bordogna, G., Fedrizzi, M., Pasi, G.: A Linguistic Modeling of Consensus for a
Fuzzy Majority in Group Decision Making. IEEE Transactions on Systems, Man
and Cybernetics 27(1), 126–132 (1997)

5. Chen, S.J., Hwang, C.L.: Fuzzy Multiple Attributive Decision Making: Theory and
its Applications. Springer, Berlin (1992)

6. Ephrati, E., Rosenschein, J.S.: Deriving Consensus in Multiagent Systems. Artifi-
cial Intelligence 87, 21–74 (1996)

7. Fedrizzi, M., Kacprzyk, J., Nurmi, H.: Consensus Degrees under Fuzzy Majorities
and Fuzzy Preferences using OWA (Ordered Weighted Average) Operators. Control
Cybernet 22, 78–86 (1993)

8. Fodor, J., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision
Support. Kluwer, Dordrecht (1994)

9. Herrera, F., Herrera-Viedma, E., Verdegay, J.L.: A Model of Consensus in Group
Decision Making under Linguistic Assessments. Fuzzy Sets and Systems 78, 73–87
(1996)

10. Herrera, F., Herrera-Viedma, E., Verdegay, J.L.: A Rational Consensus Model in
Group Decision Making using Linguistic Assessments. Fuzzy Sets and Systems 88,
31–49 (1997)

11. Herrera, F., Herrera-Viedma, E., Verdegay, J.L.: Linguistic Measures Based on
Fuzzy Coincidence for Reaching Consensus in Group Decision Making. Interna-
tional Journal of Approximate Reasoning 16, 309–334 (1997)

12. Herrera, F., Herrera-Viedma, E., Mart́ınez, L.: A Fuzzy Linguistic Methodology
to Deal With Unbalanced Linguistic Term Sets. IEEE Transactions on Fuzzy Sys-
tems 16(2), 354–370 (2008)

13. Herrera-Viedma, E., Herrera, F., Chiclana, F.: A Consensus Model for Multiperson
Decision Making with Different Preference Structures. IEEE Transactions on Sys-
tems, Man and Cybernetics. Part A: Systems and Humans 32(3), 394–402 (2002)

14. Herrera-Viedma, E., Mart́ınez, L., Mata, F., Chiclana, F.: A Consensus Support
System Model for Group Decision-Making Problems with Multi-granular Linguistic
Preference Relations. IEEE Transaction on Fuzzy Systems 13(5), 644–658 (2005)

15. Herrera-Viedma, E., Chiclana, F., Herrera, F., Alonso, S.: A Group Decision-
Making Model with Incomplete Fuzzy Preference Relations Based on Additive
Consistency. IEEE Transactions on Systems, Man and Cybernetics. Part B, Cy-
bernetics 37(1), 176–189 (2007)

16. Herrera-Viedma, E., Alonso, S., Chiclana, F., Herrera, F.: A Consensus Model
for Group Decision Making with Incomplete Fuzzy Preference Relations. IEEE
Transactions on Fuzzy Systems 15(5), 863–877 (2007)
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Abstract. Under interval input-output data, 25 qualitative different ef-
ficiencies have been proposed. In this paper, SBM models for DEA with
interval input-output data are investigated in order to introduce quan-
titative evaluation. It is shown that SBM models for 14 efficiencies are
reduced to linear programming problems. Moreover, in order to evalu-
ate decision making units in a negative way, we generalize the inverted
DEA into the case of interval input-output data. Evaluation based on
efficiency-inefficiency scores is investigated.

1 Introduction

The efficiency of a decision making unit (DMU) can be evaluated simply by the
ratio of its output amount to its input amount. When there are many different
inputs and many different outputs, it is difficult to define the total input and
output amounts. In order to evaluate the efficiency of DMUs with multiple inputs
and outputs, data envelopment analysis (DEA) [1] was proposed. In DEA, the
efficiency of a DMU is evaluated in comparison with many DMUs having same
kinds of inputs and outputs. Because of its usefulness and tractability, a lot of
applications as well as methodological developments of DEA were done.

Because data are sometimes observed with a noise and/or with the inaccuracy,
DEA with uncertain data is required. To this end, sensitivity analysis [2,3] was
developed. This analysis usually works well in data fluctuations of only one
DMU. Chance constrained models [4,13] of DEA were proposed in which input-
output data are treated as random variable vectors. In this approach, we need to
assume special types of probability distributions and the reduced problems for
evaluating efficiency generally becomes nonlinear programming problems. The
interval approach [6,10] and fuzzy set approach [7,9,11] were also proposed. In
those approaches, imprecise data are represented by intervals or fuzzy numbers
and the range or fuzzy set of efficiency scores are calculated. Inuiguchi and
Tanino [9] proposed possible and necessity efficiencies and showed the relation
with fuzzy efficiency scores. Moreover, imprecise DEA [5] was also developed in
order to treat imprecise knowledge about input-output data in DEA. The model
allows interval data and ordinal data, where ordinal data specifies only the order
of data values but not real data values. It is shown in [5] that the efficiency
evaluation problem with imprecise data is reduced to a linear programming.

V. Torra and Y. Narukawa (Eds.): MDAI 2008, LNAI 5285, pp. 98–109, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Recently, the authors [8,12] proposed an approach to DEA with interval data.
Dominance relation between DMUs are variously defined based on the combina-
tions of four kinds of inequality relations between intervals. They proposed 25
efficiencies and showed that any efficiencies defined by logical combinations of
four inequalities between intervals can be obtained by logical combinations of the
25 efficiencies. The strong-weak relations among those 25 efficiencies are shown.
This implies that owing to the imprecision of data, the efficiency of DMU can be
evaluated qualitatively. Moreover, they showed that the 25 efficiency test prob-
lems are solved by multi-phase simplex methods. The 25 kinds of efficiency scores
are also defined but they are not consistent with their strong-weak relations.

In this paper, we extend the authors’ previous approach [8,12]. First we pro-
pose efficiency scores consistent with the strong-weak relations among 25 effi-
ciencies. In order to equip good properties, we introduce the SBM model [15]. To
each of 25 efficiencies, an SBM model is formulated. We show that SBM models
for 14 efficiencies can be reduced to linear programming problems.

DEA provides an optimistic evaluation so that some DMU may be positively
overrated. To moderate such a positive overassessment, we introduce a negative
assessment. The inverted DEA model [16] has been proposed for such a purpose.
Then we extend the inverted DEA model into the case of interval input-output
data. We investigate the overall evaluation combining DEA results and the in-
verted DEA results under interval data.

This paper is organized as follows. In next section, we briefly review the
authors’ approach to DEA with interval input-output data. In Section 3, we
develop SBM model under interval input-output data. Moreover we investigate
the inverted DEA with interval input-output data.

2 Data Envelopment Analysis with Interval Data

Data envelopment analysis (DEA) [1] is a tool to evaluate Decision Making
Units (DMUs) based on the comparison among input-output data. If there is no
possible activity outperforming the o-th DMU under given input-output data,
the o-th DMU is regarded as efficient. In this paper, we evaluate DMUs when
input-output data are given as intervals. It was shown that 25 kinds of efficiencies
are obtained and that DMUs can be qualified by the 25 efficiencies [8].

We assume the i-th input data of the j-th DMU is given by interval Xij =
[xL

ij , x
R
ij ] and the k-th output data of the j-th DMU by interval Ykj = [yL

kj , y
R
kj ].

For the sake of the simplicity, we use an interval input data matrix X having Xij

as its (i, j)-component and an interval output matrix Y having Ykj as its (k, j)-
component. The interval input-output data of j-th DMU is given by (X·j ,Y·j),
where X·j and Y·j are j-th column of interval matrices X and Y. Moreover, we
use matrices XL = (xL

ij), XR = (xR
ij), Y L = (yL

kj) and Y R = (yL
kj) showing lower

and upper bounds of interval matrices X and Y. The j-th columns of XL, XR,
Y L and Y R are denoted by XL

·j , XR
·j , Y L

·j and Y R
·j , respectively.

In order to define efficiencies, we need to introduce dominance relations and a
set of possible activities which is called a production possibility set. The following



100 M. Inuiguchi and F. Mizoshita

dominance relations �Q (Q ∈ {Π, N, L, R, LR, L|R}) between two interval input-
output data (Γ1, ∆1) and (Γ2, ∆2) are defined:

(Γ1, ∆1) �Π (Γ2, ∆2) ⇔ xL
1 ≤ xR

2 and yL
1 ≥ yR

2 , (1)
(Γ1, ∆1) �N (Γ2, ∆2) ⇔ xR

1 ≤ xL
2 and yR

1 ≥ yL
2 , (2)

(Γ1, ∆1) �L (Γ2, ∆2) ⇔ xR
1 ≤ xR

2 and yL
1 ≥ yL

2 , (3)
(Γ1, ∆1) �R (Γ2, ∆2) ⇔ xL

1 ≤ xL
2 and yR

1 ≥ yR
2 , (4)

(Γ1, ∆1) �LR (Γ2, ∆2) ⇔ (Γ1, ∆1) �L (Γ2, ∆2) and (Γ1, ∆1) �R (Γ2, ∆2), (5)
(Γ1, ∆1) �L|R (Γ2, ∆2) ⇔ (Γ1, ∆1) �L (Γ2, ∆2) or (Γ1, ∆1) �R (Γ2, ∆2). (6)

Using dominance relations �Q, Q ∈ {Π, N, L, R, LR, L|R}, we define 25 strong
dominance relations by

(Γ1, ∆1) �Q1−Q2 (Γ2, ∆2) ⇔ (Γ1, ∆1) �Q1 (Γ2, ∆2) and (Γ2, ∆2)��Q2(Γ1, ∆1),
Q1 ∈ Q1, Q2 ∈ Q2, (7)

where Q1 = {Π, N, L, R, LR} and Q2 = {Π, N, L, R, L|R}. In (7), we do not
consider the cases when Q1 = L|R or Q2 = LR because they are evaluated by
the efficiencies defined by using the 25 strong dominance relations [8].

Let e = (1, 1, . . . , 1)T. The possible activities are uniquely defined by

P = {(γ, δ) | (Xλ,Yλ) �L (γ, δ), (Xλ,Yλ) �R (γ, δ), eTλ = 1, λ ≥ 0}. (8)

Then we can define 25 kinds of (Q1-Q2)-efficiencies as follows:

the j-th DMU is (Q1-Q2)-efficient ⇔ � ∃(γ, δ) ∈ P : (γ, δ) �Q1-Q2 (X·j ,Y·j),
(9)

where Q1 ∈ Q1 and Q2 ∈ Q2.
These 25 (Q1-Q2)-efficiencies are qualitatively different. It should be noted

that, owing to the uncertainty of input-output data, we can evaluate efficien-
cies of DMUs qualitatively. Considering the combinations of those (Q1-Q2)-
efficiencies by logical connectives, we have much more efficiencies.

The strong-weak relation among 25 (Q1-Q2)-efficiencies is shown as in
Figure 1. As shown in Figure 1, Π-N efficiency is the strongest. A Π-N effi-
cient DMU stays efficient even if input-out data fluctuate in the given intervals.
On the contrary, N-Π efficiency is the weakest. An N-Π efficient DMU is efficient
only for a combination of input-output values in the given intervals. The others
are between them but there are many kinds. Considering the definition of (Q1-
Q2)-efficiency, the influence of dominance relation �Q1 would be stronger than
that of dominance relation �Q2 . In this sense, we may use only five (Q1-Q2)-
efficiencies whose Q1’s are different one another in order to reduce the complexity
of the analysis.

Inuiguchi and Mizoshita [8] showed that each of 25 (Q1-Q2)-efficiencies of a
DMU is tested by solving a mathematical programming problem. The test prob-
lem of a (Q1-Q2)-efficiency of the o-th DMU can be formulated as the following
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Fig. 1. Strong-weak relation among 25 efficiencies

Table 1. The correspondence between Qi and (Qi1, Qi2, Qi3, Qi4), i = 1, 2

Q1 Q11 Q12 Q13 Q14 Q2 Q21 Q22 Q23 Q24

Π L R R L Π R L L R
N R L L R N L R R L
L L L R R L L L R R
R R R L L R R R L L

mixed integer programming problem:

maximize s,
subject to⎧⎪⎪⎨
⎪⎪⎩

if Q1 �= LR
XQ11λ ≤ XQ12·o , Y Q13λ ≥ Y Q14·o ,

if Q1 = LR
XLλ ≤ XL·o, Y Lλ ≥ Y L·o , XRλ ≤ XR·o, Y Rλ ≥ Y R·o ,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if Q2 �= L|R
m∑

i=1

XQ21
i· λz1−

i −
p∑

k=1

Y Q23
k· λz1+

k + s =
m∑

i=1

xQ22
io z1−

i −
p∑

k=1

yQ24
ko z1+

k ,

if Q2 = L|R⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m∑
i=1

XL
i·λz1−

i −
p∑

k=1

Y R
k· λz1+

k + s ≤
m∑

i=1

xL
ioz

1−
i −

p∑
k=1

yR
koz

1+
k ,

m∑
i=1

XR
i· λz2−

i −
p∑

k=1

Y L
k·λz2+

k + s ≤
m∑

i=1

xR
ioz

2−
i −

p∑
k=1

yL
koz

2+
k ,

eTλ = 1, λ ≥ 0, λo = 0,

zj−
i ∈ {0, 1}, i = 1, 2, . . . , m, zj+

k ∈ {0, 1}, k = 1, 2, . . . , p, j = 1, 2,
(10)
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where the correspondence between Qi and Qij , j = 1, 2, 3, 4 is shown in Table 1.
If Problem (10) has a feasible solution such that s > 0, the o-th DMU is not
(Q1−Q2)-efficient. Otherwise, the o-th DMU is (Q1−Q2)-efficient.

In some cases, Problem (10) is reduced to a linear programming problem by
the following theorem (Mizoshita and Inuiguchi [12]).

Theorem 1. Assume one of the following assertions holds.

1. Q1 �= LR, Q2 �= L|R, XQ21 ≤ XQ11 , XQ12 ≤ XQ22 , Y Q13 ≤ Y Q23 and
Y Q24 ≤ Y Q14 ,

2. Q1 �= LR, Q2 = L|R, XQ12 ≤ XL ≤ XQ11 and Y Q13 ≤ Y R ≤ Y Q14 ,
3. Q1 �= LR, Q2 = L|R, (XQ21 ≤ XL ≤ XQ22 or XQ21 ≤ XR ≤ XQ22) and

(Y Q24 ≤ Y L ≤ Y Q23 or Y Q24 ≤ Y R ≤ Y Q23),
4. Q1 = LR and Q2 = L|R.

Then we have z1− = e and z1+ = e at an optimal solution of Problem (10).
Similarly, assume one of the following assertions holds.

1. Q1 �= LR, Q2 = L|R, XQ12 ≤ XR ≤ XQ11 and Y Q13 ≤ Y L ≤ Y Q14 ,
2. Q1 = LR and Q2 = L|R.

Then, we have z2− = e and z2+ = e at an optimal solution of Problem (10).

From Theorem 1, if Q1-Q2 is Π-N, N-Π, N-N, N-L, N-R, N-L|R, L-N, L-L, R-
N, R-R, LR-N, LR-L, LR-R or LR-L|R, we can solve Problem (10) with fixing
z1− = e, z1+ = e, z2− = e and z2+ = e. In these cases, Problem (10) is reduced
to a linear programming problem. In Figure 1, those efficiencies are shown by
the shade. Mizoshita and Inuiguchi [12] showed that even the other 11 efficiency
test problems are solved by a multi-phase phase simplex method.

In order to evaluate the proximity to (Q1−Q2)-efficiency, Mizoshita and
Inuiguchi [12] have defined a (Q1−Q2)-efficiency score. Unfortunately, the score
is counter-intuitive to the strong-weak relation among (Q1−Q2)-efficiencies. The
score of a DMU to a stronger (Q1−Q2)-efficiency can take a larger value than
that to a weaker (Q1−Q2)-efficiency. In next section, we would like to remedy
this inadequacy by introducing the slack-based measure (SBM) model.

3 SBM Model for Interval Input-Output Data

3.1 SBM Model for Crisp Input-Output Data

In CCR and BCC models of DEA, the efficiency scores of DMUs can be
calculated by solving efficiency test problems. The scores depend on the choice
between input-orientation and output-orientation. There are no CCR/BCC mod-
els treating input and output equally. On the contrary, the additive model
of DEA treats input and output equally but no efficiency scores can be ob-
tained. Tone [14] proposed efficiency scores by using slack variables in the ad-
ditive model. Tone [15] considered desirable properties for efficiency scores and
proposed the slack-based measure (SBM) model.
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Let (xi, yi) be the input-output data of the i-th DMU, where xi is the input
data represented as an m-dimensional vector and y is the output data repre-
sented as a p-dimensional vector. Let X = (x1, . . . , xn) be an m × n matrix of
input data and Y = (yi, . . . , yn) be a p × n matrix of output data. The SBM
model [15] evaluating o-th DMU’s efficiency is the following linear fractional
programming problem:

minimize

1 − 1
m

m∑
i=1

s−i /xio

1 +
1
p

p∑
k=1

s+
k /yro

,

subject to Xλ + s− = xo,
Y λ − s+ = yo,
eTλ = 1,
λ ≥ 0, s− ≥ 0, s+ ≥ 0.

(11)

The efficiency score is obtained as the optimal value to this problem. The o-
th DMU is efficient if and only if the optimal value is zero. It is shown that
Problem(11) is reduced to a linear programming problem.

We define a reference-set Ro with respect to the o-th DMU by Ro = {j ∈
{1, 2, . . . , n} | λ∗

j > 0}, where λ∗
j is the j-th component of λ∗. Then the efficiency

score of SBM model has the following properties:

(P1)Unit invariant: The score should be invariant with respect to the units of
data.

(P2)Monotone: The score should be monotone decreasing in each slack in input
and output.

(P3)Translation invariant: The score should be invariant under parallel transla-
tion of the coordinate system applied.

(P4)Reference-set dependent: The score should be determined only by consulting
the reference-set of the DMU concerned.

3.2 Extension to the Case of Interval Input-Output Data

Let us introduce SBM model into DEA with interval input-output data. We
find that, in interval case, there are two comparisons between the activities
of the o-th DMU and the combined activities of DMUs which are appeared
in constraints with respect to Q1 part and Q2 part, while in the conventional
case, there is only one comparison. This is caused by a fact that the dominance
relation between intervals uses their lower and upper bounds. Taking care of this
difference, we define the following efficiency score of the o-th DMU corresponding
to the objective function of Problem (11):

ρo =

1 − 1
2m

m∑
i=1

(
d−i
xR

io

+
s−i
xR

io

)

1 +
1
2p

p∑
k=1

(
d+

k

yR
ko

+
s+

k

yR
ko

) , (12)
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where d+ = (d+
1 , . . . , d+

m)T and d− = (d−1 , . . . , d−p )T are slack variable vectors
corresponding to Q1 part while s+ = (s+

1 , . . . , s+
m)T and s− = (s−1 , . . . , s−p )T

are slack variable vectors corresponding to Q2 part (see constraints of Problem
(13) described later for more precise definitions of slack variables). Then it is
conceivable to employ ρo in (12) as the objective function to be maximized.

In order to evaluate the efficiency, we should check the positivity of the sum∑m
i=1 s+

i +
∑p

k=1 s−k . If it can be positive, the o-th DMU is not (Q1−Q2)-efficient.
The maximization of ρo in (12) may make the sum

∑m
i=1 s+

i +
∑p

k=1 s−k zero
even if there exists a feasible solution with

∑m
i=1 s+

i +
∑p

k=1 s−k > 0. Then,
we add a constraint

∑m
i=1 s+

i +
∑p

k=1 s−k ≥ ε where ε is a very small positive
number.

As the result, the SBM model extended to interval input-output data is for-
mulated as the following mixed integer programming problem:

minimize ρo =

1 − 1
2m

m∑
i=1

(
d−i
xR

iq

+
s−i
xR

iq

)

1 +
1
2p

p∑
k=1

(
d+

k

yR
kq

+
s+

k

yR
kq

) ,

subject to
if Q1 �= LR,{

XQ11
i· λ + d−i = xQ12

iq , i = 1, . . . , m,

Y Q13
k· λ − d+

k = yQ14
kq , k = 1, . . . , p,

if Q1 = LR,{
XL

i·λ + d−i ≤ xL
iq , XR

i· λ + d−i ≤ xR
iq , i = 1, . . . , m,

Y L
k·λ − d+

k ≥ yL
kq, Y R

k· λ − d+
k ≥ yR

kq, k = 1, . . . , p,

if Q2 �= L|R,{
XQ21

i· λz1−
i + s−i = xQ22

iq z1−
i , i = 1, . . . , m,

Y Q23
k· λz1+

k − s+
k = yQ24

kq z1+
k , k = 1, . . . , p,

if Q2 = L|R,{
XL

i·λz1−
i + s−i ≤ xL

iqz
1−
i , XR

i· λz2−
i + s−i ≤ xR

iqz
2−
i , i = 1, . . . , m,

Y L
k·λz2+

k − s+
k ≥ yL

kqz
2+
k , Y R

k· λz1+
k − s+

k ≥ yR
kqz

1+
k , k = 1, . . . , p,

m∑
i=1

s+
i +

p∑
k=1

s−k ≥ ε, eTλ = 1, λ ≥ 0, λo = 0, d−, d+, s−, s+ ≥ 0,

z1−
i , z2−

i , z1+
k , z2+

k ∈ {0, 1}, i = 1, 2, . . . , m, k = 1, 2, . . . , p.

(13)

If there is no feasible solution, the o-th DMU is (Q1-Q2)-efficient. If
∑m

i=1 s+
i +∑p

k=1 s−j = ε holds at the obtained optimal solution, the o-th DMU is regarded as
(Q1-Q2)-efficient (to confirm the (Q1-Q2)-efficiency, we may solve Problem (10)).
Otherwise, the o-th DMU is not (Q1-Q2)-efficient and the optimal value is the
score called the (Q1-Q2)-efficiency score. Note that s of Problem (10) is corre-
sponding to

∑m
i=1 s+

i +
∑p

k=1 s−k of Problem (13).
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Problem(13) is reducedto the followingproblemwitha linearobjective function:

minimize τo = t − 1
2m

m∑
i=1

(
D−

i

xR
iq

+
S−

i

xR
iq

)
,

subject to

1 = t +
1
2p

p∑
k=1

(
D+

k

yR
kq

+
S+

k

yR
kq

)
,

if Q1 �= LR,{
XQ11

i· Λ + D−
i = xQ12

iq t, i = 1, . . . , m,

Y Q13
k· Λ − D+

k = yQ14
kq t, k = 1, . . . , p,

if Q1 = LR,{
XL

i·Λ + D−
i ≤ xL

iqt, XR
i· Λ + D−

i ≤ xR
iqt, i = 1, . . . , m,

Y L
k·Λ − D+

k ≥ yL
kqt, Y R

k· Λ − D+
k ≥ yR

kqt, k = 1, . . . , p,

if Q2 �= L|R,{
XQ21

i· Λz1−
i + S−

i = xQ22
iq z1−

i t, i = 1, . . . , m,

Y Q23
k· Λz1+

k − S+
k = yQ24

kq z1+
k t, k = 1, . . . , p,

if Q2 = L|R,{
XL

i·Λz1−
i + S−

i ≤ xL
iqz

1−
i t, XR

i· Λz2−
i + S−

i ≤ xR
iqz

2−
i t, i = 1, . . . , m,

Y L
k·Λz1+

k − S+
k ≥ yL

kqz
1+
k t, Y R

k· Λz2+
k − S+

k ≥ yR
kqz

2+
k t, k = 1, . . . , p,

m∑
i=1

S+
i +

p∑
k=1

S−
j ≥ tε, eTΛ = t, Λ ≥ 0, Λo = 0, D−, D+, S−, S+ ≥ 0,

z1−
i , z2−

i , z1+
k , z2+

k ∈ {0, 1}, i = 1, 2, . . . , m, k = 1, 2, . . . , p, t ≥ 0.
(14)

Let (τ∗
o , t∗, Λ∗, D−∗, D+∗, S−∗, S+∗, z1−∗, z2−∗, z1+∗, z2+∗) be an optimal

solution to Problem (14). Then an optimal solution to Problem (13) is obtained
as (ρ∗o, λ∗, d−∗, d+∗, s−∗, s+∗, z1−∗, z2−∗, z1+∗, z2+∗) with definitions,

ρ∗o = τ∗
o , λ∗ = Λ∗/t∗, d−∗ = D−∗/t∗, d+∗ = D+∗/t∗,

s−∗ = S−∗/t∗ and s+∗ = S+∗/t∗.
(15)

Theorem 1 is valid also for Problem (14). Then if Q1-Q2 is Π-N, N-Π, N-N,
N-L, N-R, N-L|R, L-N, L-L, R-N, R-R, LR-N, LR-L, LR-R or LR-L|R, Problem
(14) is reduced to a linear programming problem. (Q1-Q2)-efficiency score satisfy
properties (P1), (P2), (P3) and (P4) as well as the following property:

(P5)Consistent with strong-weak relation: The score should be consistent with
the strong-weak relation among (Q1-Q2) efficiencies.

4 Bipolar Evaluation Based on Interval Data

4.1 Inverted DEA

DEA gives an optimistic evaluation because it chooses the most favorable pa-
rameters for the evaluated DEA. Therefore DMUs may sometimes be positively
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overrated. To moderate such a positive overassessment, we may add a negative
assessment. The inverted DEA model [16] has been proposed to evaluate the
inefficiency of a DMU. Then DMUs can be evaluated by the bipolar scale, effi-
ciency vs. inefficiency. In order to introduce the bipolar assessment, we extend
the inverted DEA to interval input-output data in this section.

In [16], inverted models corresponding to BCC models are formulated. In
this section, we consider the inverted model corresponding to SBM model. The
inverted SBM model can be formulated as

minimize

1 − 1
p

p∑
k=1

s−k /yro

1 +
1
m

m∑
i=1

s+
i /xio

,

subject to Xλ − s+ = xo,
Y λ + s− = yo,
eTλ = 1,
λ ≥ 0, s− ≥ 0, s+ ≥ 0.

(16)

In DEA, we search a possible activity having a larger output with a smaller
input than the o-th DMU’s activity and if there is no such activity, the o-
th DMU is regarded as efficient. On the contrary, In the inverted DEA, we
search a possible activity having a smaller output with a larger input than
the o-th DMU’s activity and if there is no such activity, the o-th DMU is
regarded as inefficient. Therefore, the evaluation policy is totally opposite.
The score obtained by the inverted SBM model can be seen as inefficiency
score.

Given a pair of efficiency score θ and inefficiency score ϕ, the activities of
DMUs can be classified into the following four categories:

High-class: DMUs with θ ≥ α and ϕ < β.
Commonplace: DMUs with θ < α and ϕ < β.

Low-class: DMUs with θ < α and ϕ ≥ β.
Peculiar: DMUs with θ ≥ α and ϕ ≥ β.

Here α and β are given thresholds.

4.2 Inverted DEA with Interval Input-Output Data

As the inverted DEA is parallel to DEA, we can easily extend the inverted DEA
to the case of interval input-output data. The inverted SBM model for interval
input-output data is formulated as

minimize ηo =

1 − 1
2p

p∑
k=1

(
d−k
yR

kq

+
s−k
yR

kq

)

1 +
1

2m

m∑
i=1

(
d+

i

xR
iq

+
s+

i

xR
iq

) ,
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subject to
if Q1 �= LR,{

XQ13
i· λ − d+

i = xQ14
iq , i = 1, . . . , m,

Y Q11
k· λ + d−k = yQ12

kq , k = 1, . . . , p,

if Q1 = LR,{
XL

i·λ − d+
i ≥ xL

iq , XR
i· λ − d+

i ≥ xR
iq , i = 1, . . . , m,

Y L
k·λ + d−k ≤ yL

kq, Y R
k· λ + d−k ≤ yR

kq, k = 1, . . . , p,

if Q2 �= L|R,{
XQ23

i· λz1+
i − s+

i = xQ24
iq z1+

i , i = 1, . . . , m,

Y Q21
k· λz1−

k + s−k = yQ22
kq z1−

k , k = 1, . . . , p,

if Q2 = L|R,{
XL

i·λz1+
i − s+

i ≥ xL
iqz

1+
i , XR

i· λz2+
i − s+

i ≥ xR
iqz

2+
i , i = 1, . . . , m,

Y L
k·λz2−

k + s−k ≤ yL
kqz

2−
k , Y R

k· λz1−
k + s−k ≤ yR

kqz
1−
k , k = 1, . . . , p,

m∑
i=1

s−i +
p∑

k=1

s+
k ≥ ε, eTλ = 1, λ ≥ 0, λo = 0, d−, d+, s−, s+ ≥ 0,

z1−
i , z2−

i , z1+
k , z2+

k ∈ {0, 1}, i = 1, 2, . . . , m, k = 1, 2, . . . , p.

(17)

If no feasible solution exists, the o-th DMU is (Q1-Q2)-inefficient. If
∑m

i=1 s+
i +∑p

k=1 s−j = ε holds at the obtained optimal solution, the o-th DMU is regarded
as (Q1-Q2)-inefficient. Otherwise, the o-th DMU is not (Q1-Q2)-inefficient and
the optimal value is the score called the (Q1-Q2)-inefficiency score. As Problem
(13) is reduced to Problem (14), Problem (17) can be reduced to a simpler
programming problem. Moreover, owing to Theorem 1, fourteen of them can be
reduced to linear programming problems.

As we have 25 (Q1-Q2)-efficiencies, we have 25 (Q1-Q2)-inefficiencies. Com-
bining those, we can analyze the efficiency-inefficiency of a DMU in various
ways. However, this variety would be too huge. We may restrict ourselves within
efficiencies and inefficiencies whose Q1-Q2 is Π-N, L-L, R-R, LR-L—R or N-Π .

Using (Q1-Q2)-efficiency and inefficiency scores, we can classify DMUs into
the following five categories:

High-Class: DMUs which are (Q1-Q2)-efficient for some Q1 ∈ Q1 and Q2 ∈ Q2

and not (Q1-Q2)-inefficient for all Q1 ∈ Q1 and Q2 ∈ Q2. Among them, (Π-
N)-efficient DMUs are the first-class.

Commonplace: DMUs which are neither (Q1-Q2)-efficient nor (Q1-Q2)-
inefficient for all Q1 ∈ Q1 and Q2 ∈ Q2.

Low-Class: DMUs which are not (Q1-Q2)-efficient for any Q1 ∈ Q1 and Q2 ∈
Q2 and (Q1-Q2)-inefficient for some Q1 ∈ Q1 and Q2 ∈ Q2. Among them,
(Π-N)-inefficient DMUs are the lowest.

Peculiar: DMUs which are (Π-N)-efficient and at the same time (Π-N)-
inefficient.

Uncertain: DMUs which are (R-R)-efficient and at the same time
(R-R)-inefficient but neither (Π-N)-efficient nor (Π-N)-inefficient.
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A

B

0 Output 1/Input

Output 2/Input

Fig. 2. Peculiar versus uncertain DMU

The difference between peculiar DMU and uncertain DMU can be illustrated
in Figure 2. Figure 2 shows a case of one input and two outputs. The production
possible set obtained from all DMUs except the o-th DMU are shown by four
polygonal lines on (output 1/input)-(output 2/input) coordinate. If the activity
of the o-th DMU is represented by box A, the o-th DMU becomes Π-N efficient
since two concave polygonal lines are passing under box A. In this case, because
two convex polygonal lines are passing right side of box A, the o-th DMU becomes
Π-N inefficient, too. Therefore, the o-th DMU located at box A is peculiar. On
the other hand, if the activity of the o-th DMU is represented by box B, the o-th
DMU becomes R-R efficient since two concave polygonal lines are passing under
the upper right corner point of box B. In this case, because two convex polygonal
lines are passing over lower left corner point of box B, the o-th DMU becomes
R-R inefficient, too. Therefore, the o-th DMU located at box B is uncertain.
As shown in Figure 2, peculiarity indicates that DMU locates at the edge of
production possibility set while uncertainty indicates that the input-output data
of DMU is very wide.

5 Conclusions

In this paper, we have proposed SBM models with interval input-output data. By
this approach, the efficiencies ofDMUscanbe evaluatedqualitativelyandquantita-
tively. Moreover, we have also proposed inverted DEA models with interval input-
output data. With these models, bipolar evaluations of the efficiencies ofDMUs are
available.By the proposed approach, the robustness andpossibility of the efficiency
can be analyzed. The results are very different from the conventional approach us-
ing the center values of intervals.

Due to the limited space, we could not demonstrate the usefulness of the pro-
posed approach. However, the proposed approach is applied to realworld data
about activities of many Japanese banks. We observed that many kinds of efficien-
cies are obtained and that there exist DMUs included in different categories of the
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bipolar analysis. Byusing interval data, amore detailed analysiswith respect to the
uncertainty is possible. The further applications and modifications of the proposed
approach would be the future research topic.
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Abstract. Threat evaluation is a high-level information fusion prob-
lem of high importance within the military domain. This task is the
foundation for weapons allocation, where assignment of blue force (own)
weapon systems to red force (enemy) targets is performed. In this paper,
we compare two fundamentally different approaches to threat evaluation:
Bayesian networks and fuzzy inference rules. We conclude that there are
pros and cons with both types of approaches, and that a hybrid of the
two approaches seems both promising and viable for future research.

Keywords: Bayesian networks, fuzzy inference rules, fuzzy logic, threat
assessment, threat evaluation, weapons allocation.

1 Introduction

In a military environment it is often the case that decision makers in real-time
have to evaluate the tactical situation and to protect defended assets against
enemy targets by assigning available weapon systems to them [1]. In situations
with several potential threats, a prioritizing of targets is necessary. Such an order
of priority is often based on the degree of threat the targets represent to friendly
defended assets. To determine which of several threats that represent the highest
danger is of great importance, since errors such as prioritizing a lesser threat as
a greater threat can result in engaging the wrong target, which often will have
severe consequences [2]. The calculation of such threat values is often referred
to as threat evaluation.

Threat evaluation is a part of threat analysis [3], which in an information
fusion context is a central part of level 3 (impact assessment) in the well-known
Joint Directories of Laboratories data fusion model [4]. Threat evaluation is the
basis for weapons allocation, a process in which the decision-maker decides on
which weapon system that should be assigned to a certain target. Research in
high-level information fusion is still relatively immature [5]. As a consequence,
different methods have been proposed for e.g. threat evaluation, but a systematic
comparison between different approaches is lacking. Therefore, in this paper, we
implement and compare two different artificial intelligence (AI) approaches to
threat evaluation. The first method is the Bayesian network approach described

V. Torra and Y. Narukawa (Eds.): MDAI 2008, LNAI 5285, pp. 110–121, 2008.
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in [6], while the other is implemented as fuzzy inference rules loosely based on a
description in [7] and [8]. In a literature survey on threat evaluation, presented
in [6], these methods have been identified as two fundamentally different ap-
proaches to threat evaluation.

The remainder of this paper is organized as follows. In Section 2, a description
of the threat evaluation process is given. A central part of this process is a
function that assigns threat values to pairs of targets and defended assets. In
Section 3, the theory behind Bayesian networks is outlined, and a description of
an approach to use Bayesian networks for threat value calculation is given. A
similar description on the use of fuzzy logic for threat value calculation is given
in Section 4. The properties of these two approaches are compared in Section 5.
Finally, in Section 6 the paper is concluded, and thoughts regarding future work
are presented.

2 Threat Evaluation

Consider a tactical situation where we have a set of defended assets A =
{A1, . . . , An} that we are interested in to protect (e.g. friendly forces, bridges,
and power plants). There is also a set of air targets T = {T1, . . . , Tm}, which
have been detected in the surveillance area. Now, the problem is to, for each
target-defended asset pair (Ti, Aj) where Ti ∈ T and Aj ∈ A, assign a threat
value representing the degree of threat Ti poses to Aj , i.e., to define a function
f : T × A → [0, 1], assuming threat values between 0 (lowest possible threat
value) and 1 (highest possible threat value). Based on the calculated threat val-
ues we will create a prioritized threat list, going from the most severe threat to
the least. This prioritized threat list can later on be used as a basis for deciding
how friendly weapon systems should be allocated to the targets.

A question then becomes how to assign threat values to target-defended asset
pairs? In literature, it is often stated that a threat should be assessed as a com-
bination of its capability and intent (cf. [9,2], and [10] (p.284)) to inflict injury or
damage to defended assets. Many different capability and intent parameters for
threat evaluation have been suggested throughout literature, and an overview
of these are presented in [6]. Examples of parameters for threat evaluation are
target type, velocity, and time before hit (TBH). In order to be able to calculate
threat values we also need to specify the function f . The two main approaches to
implement f are rule-based algorithms and graphical models [6]. We will in the
following describe and compare fuzzy inference rules with Bayesian networks,
where the former is an example of a rule-based algorithm, and the latter an
example of a graphical model.

3 Bayesian Networks

A Bayesian network characterizes a problem domain consisting of a set of ran-
dom variables U = {X1, ..., Xn}. These variables are in the Bayesian network
represented as a set of corresponding nodes (vertices) V in an acyclic directed
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graph G = (V,E), where the set of edges E ⊂ V × V specifies (conditional)
independence and dependence relations that hold between variables within the
domain. Given the graph structure G, a joint probability distribution P over U
can be calculated from a set of local probability distributions associated with
each node1 Xi, using the chain rule of Bayesian networks

P (x1, ..., xn) =
n∏

i=1

P (xi|pai), (1)

where the set of local probability distributions are the (conditional) distributions
in the product of Equation 1 (with pai we refer to an assignment of values to
the parent set PAi of node Xi). From this joint probability distribution we
can perform probabilistic inference, i.e., to compute a posterior probability of
interest conditional on available observations. This can mathematically be seen
as given a set of observations (evidence) z, a set of query variables X, and a set Y,
including all variables except X and Z, perform the computation of the posterior
probability P (X|z). Given the full joint distribution encoded in the Bayesian
network, this can in theory be computed by a brute force approach where we
compute the answer by summing out the hidden (non-evidence) variables Y:

P (X|z) =

∑
y P (X,Y, z)∑

x,y P (X,Y, z)
. (2)

However, this is in may cases computationally intractable, since we in this way
do not make use of all the independences encoded in the network. In the work
presented in this paper we have therefore used the junction tree algorithm (also
known as the join tree algorithm) [11] for inference. See [12] for an excellent
presentation of the algorithm.

3.1 Implementation

In the experiments, we have used the Bayesian network described in [6]. The
posterior probability of interest here is P (Threat = true|z), where z is a set
of observations, as described above. These observations most often correspond
to evidence regarding the information variables Target type, Speed, Distance,
and T imeBeforeHit, however, such evidence can sometimes be soft or missing,
due to limitations in sensor coverage. The structure of the Bayesian network is
shown in Figure 1.

4 Fuzzy Logic

4.1 Fuzzy Sets and Membership Functions

Fuzzy logic builds upon the concept of fuzzy sets. Fuzzy sets can be seen as
a generalization of standard crisp sets. In crisp set theory, members x of the
1 Since the nodes in G are in one-to-one correspondence with the variables in U, we

use Xi to denote both variables and their corresponding nodes.
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Fig. 1. Structure of the implemented Bayesian network

universal set X are either members or nonmembers of a set A ⊆ X. That is,
there is a discrimination function µA that for each x ∈ X assigns a value µA(x),
such that it is 0 if and only if x /∈ A, and 1 if and only if x ∈ A. In fuzzy
set theory this is generalized, so that the values assigned to x fall within a
specified range, indicating the element’s membership grade in the (fuzzy) set in
question [13]. Larger values indicate a higher degree of membership, while lower
values indicate a lower degree of membership. Hence, in fuzzy set theory there
is a membership function

µA : X → [0, 1]. (3)

It must be noted that membership grades are not to be confused with probabil-
ities. To illustrate how a fuzzy set constructed from a membership function µA

might look like, we consider the variable altitude. For a given context, it might
be hard to define crisp boundaries between low, medium, and high altitude. In-
stead, we can use membership functions to give more soft transitions between
the possible states, as seen in Figure 2.

4.2 Logical Operations on Fuzzy Sets

Having defined the concepts of fuzzy sets, we must also be able to combine
different fuzzy sets. We will here only consider two basic operations on fuzzy sets:
intersection and union. In order for a function to be acceptable as an intersection
operator, it must fulfill some basic requirements (cf. [14]). A function � fulfilling
such requirements is known as a t-norm. The t-norm we will use in this paper is
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Fig. 2. Possible membership functions describing low, medium, and high altitude.

�min, i.e.,
µA∩B(x) = �min[µA(x), µB(x)]. (4)

In the same manner, a t-conorm is a function ⊥ that fulfills certain requirements
for being a union operator. The t-conorm we have used in this paper is ⊥max,
i.e.,

µA∪B(x) = ⊥max[µA(x), µB(x)]. (5)

This means that for intersection of two fuzzy sets, we take the minimum, while for
union, we take the maximum. According to [14], these operators are comfortable
to work with both arithmetically and graphically, and are very often used.

4.3 Fuzzy Inference Rules

Fuzzy logic comprises of conditional statements such as

IF Speed == high AND Distance == close THEN Threat = high (1),

where the number within parentheses is the weight of the rule. These statements
are known as fuzzy inference rules. A fuzzy inference system most often consists
of several rules. As a first step in the inference process, each crisp numerical input
is fuzzified over all qualifying fuzzy sets required by the rules, i.e., the degree to
which each part of the antecedent of a rule is satisfied is determined using the
specified membership functions. In next step, the fuzzy operators specified in
Section 4.2, are applied to rules with more than one premise in their antecedent.
In this way, all rules outputs a single value from their antecedent.

As seen in the fuzzy inference rule above, the consequent of a rule is a fuzzy set.
This fuzzy set is for each rule reshaped using the output from its antecedent on
a specified implication method (here we have used the min-operator, truncating
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the fuzzy set specified by the consequent). Next, the output from all rules are
combined into a single fuzzy set, using an aggregation operator (in our case the
max-operator). Finally, the resulting aggregated fuzzy set is defuzzified into a
single crisp value. In the experiments presented here, we have used the centroid
calculation as a defuzzification method.

4.4 Implementation

In the fuzzy inference system, we have used the same set of input variables as
in the Bayesian network implementation, i.e., Target type, Speed, Distance,
and T ime Before Hit. The output of the system is the fuzzy set Threat. The
ingoing rules in the implementation can be seen below (we have here used a more
compact representation of the rules).

TargetType == F16 --> Threat = high (1)
TargetType == Mig21 --> Threat = medium (1)
TargetType == B2 --> Threat = high (1)
TargetType == B747 --> Threat = low (1)
TBH == short --> Threat = high (1)
TBH == medium --> Threat = medium (1)
TBH == long --> Threat = low (1)
Speed == low AND Distance == far --> Threat = low (1)
Speed == medium AND Distance == medium --> Threat = medium (1)
Speed == high AND Distance == close --> Threat = high (1)
Distance == far --> Threat = low (0.25)
Distance == medium --> Threat = medium (0.25)
Distance == close --> Threat = high (0.25)

The membership functions for the input variables T imeBeforeHit, Speed, and
Distance, together with the output variable Threat, can be seen in Figure 3.
Target type is not shown since it is implemented as an ordinary crisp set.

5 Comparison

We have integrated the two methods for threat evaluation into a test bed im-
plemented in Microsoft Visual C++ 2005. Scenarios generated in the STAGE
Scenario tool are loaded into the system as XML files, and threat values are
calculated in real-time for target-defended asset pairs, using the selected threat
evaluation method. In order to demonstrate the approaches, we have constructed
a test scenario consisting of a single defended asset and four air targets (one
F-16, one B-2 bomber, and two Boeing 747). The initial heading of the targets,
as well as their predefined way points, are shown in Figure 4. Speeds of the
targets are close to constant, except for the F-16, which accelerates at the point
of its turn against the defended asset. The reason for why we have chosen to
illustrate this particular scenario is that it shows extremes with different kinds
of air targets (fighters, bombers, and civilian aircrafts) with varying velocities. In
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(a) Membership functions for TBH (b) Membership functions for distance

(c) Membership functions for speed (d) Membership functions for threat

Fig. 3. Illustration of the membership functions used in the fuzzy inference system for
threat evaluation

Figure 5(a), the threat values inferred by the Bayesian network are shown, while
the corresponding values inferred from the fuzzy inference system are shown in
Figure 5(b) (one unit of time in the diagram corresponds to 50 updates, which is
approximately ten seconds). As can be seen, the resulting ranking of the threats
are quite similar, even though the threat values in general are higher in Figure
5(b). Another difference is that the threat values are more clearly separated in
Figure 5(a). The output from the Bayesian network better reflects the authors
opinions regarding the threat values in the scenario, but it should also be noted
that the time needed to create the fuzzy inference rules was much shorter than
for the development of the Bayesian network.

The output from a threat evaluation system obviously is dependent upon its
parameter settings (e.g., the numbers used in the conditional probability tables
in the Bayesian network, and the fuzzy sets used in the fuzzy inference system).
Since there is arbitrarily many possible parameter settings, the comparison be-
tween two specific implementations is of minor interest. Rather, what is more
interesting is the characteristics of the two approaches, such as whether the
technique is transparent to the user or not.

As can be seen in Figure 5, the changes in threat values are smoother when
using fuzzy logic than when Bayesian networks are used. Of course, the output
from the Bayesian network becomes smoother the more states that are added.
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Fig. 4. Outline of the test scenario (created in STAGE Scenario)

However, this comes with the cost of an increased burden in specifying more
conditional probabilities. Also, the computational complexity increases with an
increased number of states. This smoothness is an interesting property of fuzzy
logic, compared to the hard boundaries between states when using Bayesian
networks.

Another difference between the two approaches is that the inference goes in
only one direction when using fuzzy inference rules (i.e., evidence regarding the
input variables is entered, whereupon a crisp value for the output variable is
calculated), while we in a Bayesian network can compute an arbitrary poste-
rior probability of interest, given some evidence. As an example, we can use
the Bayesian network to calculate P (Speed = low|Distance = far) as well as
P (Threat = true|Distance = close, TBH = short, Speed = low). An even
more important property of Bayesian networks is their ability to handle missing
information. A fuzzy inference system is often dependent upon that we know
the values of all its input variables, while this is not the case of the Bayesian
network. In a hostile situation this can be very important, since we seldom have
complete sensor coverage, sensors can be disturbed by countermeasures, etc.

In this paper we used the min- and max-operators as t-norm and t-conorm.
However, many others have been proposed, and there is no common agreement
on which that is the best. In fact, different t-norms and t-conorms seems to
be appropriate for different types of problems [15]. The choice of t-norm and
t-conorm will often influence the result of the fuzzy inference, hence, the choice
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(a) Bayesian network

(b) Fuzzy inference rules

Fig. 5. Calculated threat value for different targets as a function of time

of the “right” t-norm and t-conorm can be crucial, and can be seen as a problem
with the fuzzy logic approach. Bayesian networks does not have this problem of
ad hoc solutions, since it has a sound mathematical foundation within probability
theory. Nevertheless, fuzzy inference rules are very appealing in that they are
easy to work with.

On the opposite, to obtain the probabilities that are required for the condi-
tional probability tables in a Bayesian network can often be daunting [16]. This
problem can be solved by learning the probabilities from data, however, this
demands large amounts of data that seldom is available in this domain.
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6 Conclusion and Future Work

In this paper, we have presented the problem of threat value calculation. This
problem, often referred to as threat evaluation, is a high-level information fu-
sion problem of high importance. We have presented two different approaches
to threat evaluation; Bayesian networks and fuzzy inference rules. Implementa-
tions of the two approaches have been integrated into a threat evaluation system,
working as a test bed for different threat evaluation techniques. The outputs from
the two implemented threat evaluation approaches on a specified example sce-
nario have been shown. The implemented Bayesian network’s calculated threat
values were better separated and more close to the authors opinion regarding
the threat values in the scenario, however, the Bayesian network demanded more
development time than the fuzzy inference system.

There are pros and cons with both approaches to threat evaluation. Strengths
of Bayesian networks are that they have a sound mathematical foundation within
probability theory, the ability to handle missing evidence, and that the network
can be used to calculate an arbitrary probability of interest. Strengths of fuzzy
inference rules are that they more quickly and easily can be created by non-
professionals, and that they can produce a smoother change in output without
the need for very fine discretization. Once the models have been constructed,
both fuzzy inference rules and Bayesian networks are relatively transparent to the
user. This is important since human users must be able to trust the system they
are using. This is especially true for such critical applications as threat evaluation
systems. This can be compared to black box techniques such as artificial neural
networks, which are not appropriate for this kind of applications, due to their
opaqueness.

Finally, an important difference between the two approaches is their ability to
handle uncertain input data. In the Bayesian approach, uncertain evidence can
be handled elegantly by using Pearl’s method of virtual evidence (cf. [17]), while
in the fuzzy logic approach, uncertain evidence can not be handled explicitly.
Since target tracks that are input to the threat evaluation process almost always
are imperfect to some degree, Bayesian networks are to be preferred to fuzzy
logic from a theoretical uncertainty management perspective.

6.1 Future Work

We are interested in making use of the advantages of both Bayesian networks
and fuzzy inference rules for future threat evaluation systems. This can be done
either by creating an ensemble of the different techniques, or by incorporating
one into the other, e.g., try to use fuzzy sets instead of ordinary crisp sets in the
Bayesian network.

Threat evaluation is a basis for deciding on which (if any) weapon(s) to allo-
cate to a specific target. However, to evaluate how large threat a target represents
to a defended asset is not enough for making such a decision. We also need to
know how valuable our defended assets are, what abilities we have to engage
a specific target, the probability of successful engagement, etc. We think that



120 F. Johansson and G. Falkman

implementation of a module for making such assessments will make it easier to
make better comparisons of threat evaluation techniques in the future.
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Abstract. In this paper, the fuzzy classification functions of the stan-
dard fuzzy c-means for data with tolerance using kernel functions are
proposed.

First, the standard clustering algorithm for data with tolerance using
kernel functions are introduced. Second, the fuzzy classification function
for fuzzy c-means without tolerance using kernel functions is discussed
as the solution of a certain optimization problem. Third, the optimiza-
tion problem is shown so that the solutions are the fuzzy classification
function values for the standard fuzzy c-means algorithms using kernel
functions with respect to data with tolerance. Fourth, Karush-Kuhn-
Tucker conditions of the objective function is considered, and the itera-
tive algorithm is proposed for the optimization problem. Some numerical
examples are shown.

1 Introduction

Fuzzy c-means (FCM) [1] is one of the well-known fuzzy clusterings and many
FCM variants have been proposed after FCM. In these variants, FCM algorithm
based on the concept of regularization by entropy has been proposed by one of
the authors [2]. This algorithm is called regularized entropy FCM (eFCM) and
is discussed not only for its usefulness but also for its mathematical relations
with other techniques.

There are many cases that data have some errors in clustering. Many clus-
tering algorithms have been proposed to classify the data with error. In these
algorithms, two FCM algorithms considering the inner point in the region of
data have been proposed by some of the authors [3]. The one is derived from the
standard FCM and the other is from eFCM. Because these algorithms interpret
the error of the data as an arbitrary point in a given region called “tolerance”,
these are called FCMs for data with tolerance (FCM-Ts). While FCM-T has been
proposed by considering data including some errors, it can be interpreted as the
method obtaining clearer classification result than the plain FCM by moving the
data. In the case that some data are classified vaguely by the plain FCM, there
is a chance that we can obtain the classification result closer to human judge by
daring to move the data, that is, by FCM-Ts.

V. Torra and Y. Narukawa (Eds.): MDAI 2008, LNAI 5285, pp. 122–133, 2008.
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FCM-Ts are pointed out that it is difficult to classify data with nonlinear
borders because FCM-Ts use squared distance between each datum and each
cluster center for their dissimilarity. In order to solve this problem of FCM-Ts,
two new algorithms [5] has been proposed using nonlinear transformations from
the original pattern space into a higher dimensional feature space with kernel
functions in Support Vector Machines (SVM) [6]. The one is called K-sFCM-T
derived from sFCM-T and the other is K-eFCM-T derived from eFCM-T.

Fuzzy classification functions for the standard FCM (sFCM) and eFCM with-
out tolerance have been proposed [2], respectively, in order to show how pro-
totypical an arbitrary point in the data space is to a cluster by extending the
membership to the whole space. Fuzzy classification function can be used to
classify a brand-new data to a cluster after fuzzy clustering (sFCM or eFCM) is
done for the initially given data. It is a kind of supervised classification. Fuzzy
classification function can be also used to investigate the feature of the corre-
sponding clustering algorithm since it clarify the classifying situation in whole
space than only memberships for finite number of data. Such fuzzy classifications
for FCM-Ts have not been proposed yet.

In this paper, we propose the fuzzy classification function for K-sFCM-T. This
function values are calculated by iterative algorithms obtained from a certain
optimization problem. which are derived from that fuzzy classification function
of FCM without tolerance can be interpreted as an optimization problem. We
also show some numerical examples of such fuzzy classification function.

The contents of this paper are the followings. In the second section, we define
some notation, introduce K-sFCM-T. In the third section, we propose the fuzzy
classification functions for K-sFCM-T by an iterative algorithm, which are led
from the optimization problem based on that fuzzy classification function value
for FCM without tolerance can be interpreted as the solution of a certain op-
timization problem. In the fourth section, some numerical examples are shown.
In the last section, we conclude this paper.

2 Preliminaries

In this section, we define some notation and introduce the standard fuzzy c-
means for data with tolerance using kernel function (K-sFCM-T). In the first
subsection, we define some notations which are the data for clustering, the mem-
bership by which the each data belongs to the each cluster, the cluster centers,
the tolerance for the data and the maximum tolerance for the data. In the second
subsection, we introduce K-sFCM-T which is the basis of our main theme.

2.1 Notation

In this subsection, we define some notation which are the data for clustering,
the membership by which the each data belongs to the each cluster, the cluster
centers, the tolerance for the data and the maximum tolerance for the data.

The data set x = {xi | xi ∈ Rp, i ∈ {1, . . . , N}} is given. The membership
by which xi belongs to the j-th cluster is denoted by ui,j (i ∈ {1, · · · , N},
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j ∈ {1, · · · , C}) and the set of ui,j is denoted by u ∈ RN×C called the partition
matrix. The constraint for u is

C∑
j=1

ui,j = 1 (0 ≤ ui,j ≤ 1).

A high-dimensional feature space used in SVM is denoted by H, whereas the
original space Rp is called data space. H may be an infinite-dimensional metric
space. Let the inner product denoted by 〈·, ·〉. The norm of H for an element g ∈ H
is given by ‖g‖2

H = 〈g, g〉. A transformation Φ : Rp → H is employed whereby
xi is mapped into Φ(xi). Explicit representation of Φ(x) is not usable in general
but the inner product 〈Φ(x), Φ(y)〉 can be expressed by a kernel function

K(x, y) = 〈Φ(x), Φ(y)〉. (1)

A representative kernel function is the radial basis function (RBF) kernel de-
scribed as K(x, y) = exp(−σ−2‖x − y‖2

2) with a positive parameter σ. The
cluster center set in H is denoted by W = {Wj | Wj ∈ H, j ∈ {1, . . . , C}.
v = {vj | vj ∈ Rp, j ∈ {1, . . . , C}}. The tolerance for the data x in H is denoted
by E = {Ei | Ei ∈ H, i ∈ {1, . . . , N}}. The maximum tolerance is denoted by
κ = {κi | κi ∈ R+, i ∈ {1, . . . , N}}.

2.2 Standard FCM for Data with Tolerance Using Kernel Functions

In this subsection, we introduce K-sFCM-T [5]. This algorithm is the basis of
our main theme.

K-sFCM-T is the algorithm obtained by solving the following optimization
problem:

minimize
u,E,W

Jm,k,t(u, E, W ) under

⎧⎪⎨
⎪⎩

C∑
j=1

ui,j = 1,

‖Ei‖2
H ≤ κ2

i (κi > 0),

(2)

where

Jm,k,t(u, E, W ) =
N∑

i=1

C∑
j=1

um
i,j‖Φ(xi) + Ei − Wj‖2

H. (3)

The parameter m is the power satisfying m > 1. The optimal solution u are
obtained by the following algorithm.

Algorithm 1 (K-sFCM-T)

Step 1. Give the value of m and κ. Select a kernel function K : Rp × Rp → R.
Set the initial cluster center v.
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Step 2. Calculate Y
(0)
i,j , Z

(0)

j,j̃
and d

(0)
i,j such that

Y
(0)
i,j = K(xi, v

(0)
j ), Z

(0)

j,j̃
= K(v(0)

j , v
(0)

j̃
), d

(0)
i,j = K(xi, xi) − 2Y

(0)
i,j + Z

(0)
j,j .

(4)

Set t be 0.
Step 3. Calculate u

(t)
i,j , U

(t)
j , µ

(t)
i , α

(t+1)
i , Y

(t+1)
i,j , Z

(t+1)

j,j̃
and d

(t+1)
i,j such that

u
(t)
i,j = 1/

C∑
k=1

(
d
(t)
i,j

d
(t)
i,k

)1/(m−1)

, U
(t)
j =

N∑
i=1

u
(t)
i,j

m
, µ

(t)
i =

C∑
j=1

u
(t)
i,j

m
, (5)

α
(t+1)
i =min

{
κi

(
µ

(t)
i

2
K(xi, xi) − 2µ

(t)
i

C∑
j=1

u
(t)
i,j

m
Y

(t)
i,j

+
C∑

j=1

C∑
k=1

u
(t)
i,j

m
u

(t)
i,k

m
Z

(t)
j,k

)−1/2

, µ
(t)
i

−1

}
, (6)

Y
(t+1)
i,j =U

(t+1)
j

−1
N∑

k=1

u
(t+1)
k,j

m

[(
1 − α

(t+1)
k µ

(t+1)
k

)
K(xi, xk)

+ α
(t+1)
k

C∑
	=1

u
(t+1)
k,	

m
Y

(t)
i,	

]
, (7)

Z
(t+1)

j,j̃
=U

(t+1)
j

−1
U

(t+1)

j̃

−1
N∑

k=1

N∑
	=1

u
(t+1)
k,j

m
u

(t+1)

	,j̃

m

·
[(

1 − α
(t+1)
k µ

(t+1)
k

)(
1 − α

(t+1)
	 µ

(t+1)
	

)
K(xk, x	)

+
(
1 − α

(t+1)
k µ

(t+1)
k

)
α

(t+1)
	

C∑
r=1

u
(t+1)
	,r

m
Y

(t+1)
k,r

+ α
(t+1)
k

(
1 − α

(t+1)
	 µ

(t+1)
	

) C∑
q=1

u
(t+1)
k,q

m
Y

(t+1)
	,q

+ α
(t+1)
k α

(t+1)
	

C∑
q=1

C∑
r=1

u
(t+1)
k,q

m
u

(t+1)
	,r

m
Z(t)

q,r

]
, (8)
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d
(t+1)
i,j =

(
1 − α

(t+1)
i µ

(t+1)
i

)2
K(xi, xi) + 2

(
1 − α

(t+1)
i µ

(t+1)
i

)

·
C∑

k=1

(
α

(t+1)
i u

(t+1)
i,k

m
− δk,j

)
Y

(t+1)
i,k

+
C∑

k=1

C∑
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(
α

(t+1)
i u

(t+1)
i,k

m
− δk,j

)(
α

(t+1)
i u

(t+1)
i,	

m
− δ	,j

)
Z

(t)
k,	.

(9)

where δk,j is the Kronecker’s delta.
Step 4. Check the stopping criterion. If the criterion is not satisfied, go back to

Step 3.

3 Fuzzy Classification Function of K-FCM-T

In this section, we propose the fuzzy classification function for K-sFCM-T (Al-
gorithm 1).

In the first subsection, we interpret fuzzy classification function for FCM as
the solution of an optimization problem. In the second subsection, we define
fuzzy classification function for K-sFCM-T as a new optimization problem, and
construct a new algorithm to obtain the fuzzy classification function value for
K-sFCM-T by solving the optimization problem. In the third subsection, we do
for K-eFCM-T.

3.1 Fuzzy Classification Function for FCM

In this subsection, we interpret fuzzy classification function for FCM as the
solution of an optimization problem. This interpretation is used for considering
fuzzy classification function of K-FCM-Ts.

Fuzzy classification functions [2] are available in FCMs which show how pro-
totypical an arbitrary point in the data space is to a cluster by extending the
membership ui,j to the whole space.

Fuzzy classification function ũj(x̃) for sFCM with respect to a brand-new
datum x̃ ∈ Rp is defined as

ũj(x̃) =1/
C∑

k=1

(
d̃j

d̃k

,

) 1
m−1

, where d̃j = ‖x̃ − vj‖2 (10)

and where vj is j-th cluster center obtained from sFCM. This fuzzy classification
function value is the solution ũj of the following optimization problem:

minimize
ũ

C∑
j=1

ũm
j ‖x̃ − vj‖2 under

C∑
j=1

ũj = 1 (11)
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because its Lagrange function

Lm,FCF(ũ) =
C∑

j=1

ũm
j ‖x̃ − vj‖2 + γ

⎛
⎝ C∑

j=1

ũj − 1

⎞
⎠ (12)

has KKT condition as Eq. (10), where γ is Lagrange multiplier.
Based on the above interpretation, fuzzy classification function for K-sFCM-T

is proposed by solving the corresponding optimization problem with tolerance
in the next subsection.

3.2 Fuzzy Classification Function for K-sFCM-T

In this subsection, we propose a fuzzy classification function for K-sFCM-T
(Algorithm 1) as an iterative algorithm. First, we define an optimization problem
whose component of the solution is the fuzzy classification function value for K-
sFCM-T with respect to a brand-new datum. Secondly, we solve the optimization
problem with KKT conditions. Finally, we construct a new algorithm from the
solutions of the optimization problem.

We define the following optimization problem whose component ũ of solution
(ũ, Ẽ) is the fuzzy classification value for K-sFCM-T with respect to a brand-new
datum x̃ ∈ Rp:

minimize
ũ,Ẽ

Jm,k,t,FCF(ũ, Ẽ) under

⎧⎪⎨
⎪⎩

C∑
j=1

ũj = 1,

‖Ẽ‖2
H ≤ κ̃2 (κ̃ > 0),

(13)

where

Jm,k,t,FCF(ũ, Ẽ) =
C∑

j=1

ũm
j ‖Φ(x̃) + Ẽ − Wj‖2 (14)

and where Wj is j-th cluster center obtained from K-sFCM-T. Ẽ ∈ H is the
tolerance for x̃ and κ̃ ∈ R+ is the maximum tolerance for x̃. Its Lagrange function
Lm,k,t,FCF is as below:

Lm,k,t,FCF(ũ, Ẽ) =
C∑

j=1

ũm
j ‖Φ(x̃) + Ẽ − Wj‖2

H

+ γ

⎛
⎝ C∑

j=1

ũj − 1

⎞
⎠+ δ

(
‖Ẽ‖2

H − κ̃2
)

, (15)

where γ and δ are Lagrange multipliers. Karush-Kuhn-Tucker conditions of
Lm,k,t,FCF are below:

∂Lm,k,t,FCF

∂ũj
= 0,

∂Lm,k,t,FCF

∂ε̃
= 0, γ

∂Lm,k,t,FCF

∂γ
= 0, γ ≤ 0. (16)
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The necessary condition that ũj is the minimizing value is as below:

ũj =1/

C∑
k=1

(
d̃j

d̃k

) 1
m−1

, (17)

Ẽ = − α̃

⎛
⎝ C∑

j=1

ũm
j (Φ(x̃) − Wj)

⎞
⎠ , (18)

where

d̃j =‖Φ(x̃) + Ẽ − Wj‖2
H, (19)

α̃ =min

⎧⎪⎨
⎪⎩κ̃

∥∥∥∥∥∥
C∑

j=1

ũm
j (Φ(x̃) − Wj)

∥∥∥∥∥∥
−1

, µ̃−1

⎫⎪⎬
⎪⎭ , (20)

µ̃ =
C∑

j=1

ũm
j . (21)

Since we don’t know the explicit form of Φ, we cannot calculate (17)–(21) di-
rectly. All we can know is the inner product as the value of the kernel function.
Therefore, we lead other forms with the kernel function K instead of (17)–(21).
Noting that (18) implies

Φ(x̃) + Ẽ =Φ(x̃) − α̃µ̃Φ(x̃) + α̃

C∑
j=1

ũm
j Wj

=(1 − α̃µ̃)Φ(x̃) + α̃

C∑
j=1

ũm
j Wj (22)

and that the norm for H is described with inner product form, dj and αi are
rewritten as

dj =‖Φ(x̃) + Ẽ − Wj‖2
H

=

∥∥∥∥∥(1 − α̃µ̃)Φ(x̃) + α̃

C∑
k=1

ũm
k Wk − Wj

∥∥∥∥∥
2

H

=

∥∥∥∥∥(1 − α̃µ̃)Φ(x̃) +
C∑

k=1

(α̃ũm
k − δk,j)Wk

∥∥∥∥∥
2

H

=(1 − α̃µ̃)2 〈Φ(x̃), Φ(x̃)〉

+ 2(1 − α̃µ̃)
C∑

k=1

(α̃ũm
k − δk,j) 〈Φ(x̃), Wk〉

+
C∑

k=1

C∑
	=1

(α̃ũm
k − δk,j) (α̃ũm

	 − δ	,j) 〈Wk, Wl〉 , (23)
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α̃ =min

{
κ̃

(
µ̃2〈Φ(x̃), Φ(x̃)〉 −2µ̃

C∑
j=1

ũm
j 〈Φ(x̃), Wj〉

+
C∑

j=1

C∑
k=1

ũm
j ũm

k 〈Wj , Wk〉
)−1/2

, µ̃−1

}
, (24)

where δi,j is Kronecker’s delta. Wj satisfies that

Wj =U−1
j

N∑
i=1

um
i,j

(
(1 − αiµi)Φ(xi) + αi

C∑
k=1

um
i,kWk

)
(25)

from KKT conditions for Eq.(3)

Wj = U−1
j

N∑
i=1

um
i,j(Φ(xi) + Ei), Ei = −αi(

C∑
j=1

um
i,j(Φ(xi) − Wj)), (26)

thus, 〈Φ(x̃), Wj〉 satisfies

〈Φ(x̃), Wj〉 =(Uj)−1
N∑

i=1

(ui,j)m

[
(1 − αiµi) 〈Φ(x̃), Φ(xi)〉

+ αi

C∑
	=1

(ui,	)m 〈Φ(x̃), W ′
l 〉
]
. (27)

Hence, 〈Φ(x̃), Wj〉, denoted by yj, can be obtained by solving the linear equation
Ay = b, where the element aj,j̃ of A and bj of b are

aj,j̃ =δj,j̃ − U−1
j

N∑
	

um
	,jα	u

m
	,k, bj = U−1

j

N∑
k=1

um
k,j(1 − αkµk)K(x, xk). (28)

〈
Wj , Wj̃

〉
has been already obtained as Zj,j̃ . It is natural that the initial toler-

ance Ẽ is set to 0, which is achieved by α̃ = 0. From these settings, the initial
dissimilarities d̃j are given by:

d̃j =‖Φ(x̃) + Ẽ − Wj‖2
H

=‖Φ(x̃) − Wj‖2
H

=〈Φ(x̃), Φ(x̃)〉 − 2〈Φ(x̃), Wj〉 + 〈Wj , Wj〉
=K(x̃, x̃) − 2yj + Zj,j , (29)

from which we can update ũ, µ̃, α̃ and d̃ by (17), (21), (24) and (23).
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From the above discussion, we obtain the following iterative algorithm.

Algorithm 2

Step 1. Inherit m, C, Z, K from Algorithm 1. Give the maximal tolerance value
of κ̃ for x̃. Set aj,j̃ and bj such that

aj,j̃ =δj,j̃ − U−1
j

N∑
k

um
k,jαkum

k,j̃
, bj = U−1

j

N∑
k=1

um
k,j(1 − αkµk)K(x, xk)

(30)

and solve Ay = b. Calculate d̃j such that

d̃j = K(x̃, x̃) − 2yj + Zj,j . (31)

Step 2. Calculate ũj, µ̃j, α̃ and d̃j such that

ũj =1/

C∑
k=1

(
d̃j

d̃k

) 1
m−1

, µ̃ =
C∑

j=1

ũm
j , (32)

α̃ = min

{
κ̃

(
µ̃2K(x̃, x̃) − 2µ̃

C∑
j=1

ũjyj +
C∑

j=1

C∑
k=1

ũj ũkZj,k

)−1/2

, µ̃−1

}
. (33)

d̃j =(1 − α̃µ̃)2K(x̃, x̃) + 2(1 − α̃µ̃)
C∑

k=1

(α̃ũk − δk,j)yk

+
C∑

k=1

C∑
	=1

(α̃ũk − δk,j)(α̃ũ	 − δ	,j)Zk,	. (34)

Step 3. Check the stopping criterion. If the criterion is satisfied, ũj is the fuzzy
classification function value with respect to x̃. Otherwise, go back to Step 2.

4 Numerical Examples

In this section, we show some examples of fuzzy classification function by Algo-
rithm 2. In each example, after ten trials for Algorithm 1 with different initial
cluster centers are tested and the solution with the minimal objective function
value is selected, Algorithm 2 is applied. For all examples, we employ RBF kernel

K(x, y) = exp(−σ2‖x − y‖2
2). (35)

The first example is classifying the data shown in Fig. 1 into a ring shaped cluster
and a ball one. We fix σ2 = 0.1 and m = 2, and test three different values of
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κi ∈ {0, 0.3, 0.4}. The cases of κi ∈ {0.0.3} produce the correctly classified results
shown in Fig. 2 and Fig. 3, respectively. The cases of κi = 0.4 cannot produce
the correctly classified results shown in Fig. 4. From these figures, we can find
that the larger value of κi, the larger membership for the cluster #1 and the
larger size of the range for the cluster #1.
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Fig. 1. Ring and Ball Data
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Fig. 2. Successful Classification Result
of Fig. 1 by K-sFCM-T 1 with σ2 = 0.1,
m = 2 and κi = 0, and its fuzzy classifi-
cation function surface by Algorithm 2
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Fig. 3. Successful Classification Result of
Fig. 1 by K-sFCM-T 1 with σ2 = 0.1,
m = 2 and κi = 0.3, and its fuzzy clas-
sification function surface by Algorithm 2
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Fig. 4. Miss-Classification Result of Fig. 1
by K-sFCM-T 1 with σ2 = 0.1, m = 2 and
κi = 0.4, and its fuzzy classification func-
tion surface by Algorithm 2
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Fig. 5. Crescents Data

The second example is classifying
the data shown in Fig. 4 into two cres-
cents shaped clusters. We fix σ2 = 0.1
and m = 2 and test three different
values of κi ∈ {0, 0.7, 0.8}. While the
case of κi = 0 fails shown in Fig. 6,
the cases of κi = 0.7 produce the cor-
rect result shown in Fig. 7. From these
figures, we can find that the toler-
ance helps the incomplete nonlinear-
ity of the introduced kernel and makes
the classification border bended ad-
equately. The case of κi = 0.8 can-
not produce the correctly classified
results since all the cluster centers cor-
respond with each other and all the
membership values are 0.5.
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Fig. 6. Miss-classification Result of Fig. 4
by K-sFCM-T 1 with σ2 = 0.1, m = 2 and
κi = 0, and its fuzzy classification function
surface by Algorithm 2
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Fig. 7. Successful Classification Result of
Fig. 4 by K-sFCM-T 1 with σ2 = 0.1,
m = 2 and κi = 0.7, and its fuzzy clas-
sification function surface by Algorithm 2

5 Conclusion

In this paper, we proposed the fuzzy classification function of the standard fuzzy
c-means for data with tolerance using kernel functions. First, the standard clus-
tering algorithm for data with tolerance using kernel functions was introduced.
Second, the fuzzy classification function for fuzzy c-means without tolerance
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using kernel functions was discussed as the solution of a certain optimization
problem. Third, the optimization problem was shown so that the solutions are
the fuzzy classification function values for the standard fuzzy c-means algorithm
using kernel functions with respect to data with tolerance. Fourth, Karush-Kuhn-
Tucker conditions of the objective function was considered, and the iterative
algorithm was proposed for the optimization problem. Through some numerical
examples, it was shown that how prototypical an arbitrary point in the data
space is to the already obtained cluster by extending the membership to the
whole space.

Note that the fuzzy classification function of K-eFCM-T can be also calculated
by similar iterative algorithm, though it is omitted by the sake of pages.

As the future work, using the proposed fuzzy classification function, we will
investigate fuzzy c-means algorithm using kernel functions with respect to data
with tolerance. Especially, we will study how to give the best parameter κ pro-
ducing adequate clustering results.
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Abstract. Similarity measures are usually used to compare items and identify
pairs or groups of similar individuals. The similarity measure strongly depends
on the type of values to compare. We have faced the problem of considering that
the information of the individuals is a sequence of events (i.e. sequences of web
pages visited by a certain user or the personal daily schedule). Some measures
for numerical sequences exist, but very few methods consider sequences of cate-
gorical data. In this paper, we present a new similarity measure for sequences of
categorical labels and compare it with the previous approaches.

1 Introduction

In the last years there is an increasing interest in developing techniques to deal with
sequences of data. Temporal data mining algorithms have been developed to deal with
this type of data [3,6]. Understanding sequence data is becoming very important and
the treatment of those sequences is expected to enable novel classes of applications in
the next years [1]. For example, telecommunication companies store spatio-temporal
data daily, these sequences contain detailed information about the personal or vehicu-
lar behaviour, which can allow to find interesting patterns to be used in many different
applications, such as traffic control. Similarly, people surf the Internet. This is another
great potential source of sequences of users’actions (e.g. web pages visited). The study
of the behaviour on the Internet can also lead to interesting applications, such as in-
trusion detection. There are other domains that also produce temporal sequences [4]:
protein sequences that describe the amino acid composition of proteins and represent
the structure and function of proteins, gene information (DNA) that encode the genetic
makeup, electronic health records that store the clinical history of patients, etc.

However, this type of data requires an adaptation of the classical data mining and de-
cision making techniques applied to static data. Data are called static if all their feature
values do not change with time, or change negligibly. In contrast, sequence data analy-
sis is interested in studying the changes in the values in order to identify interesting
temporal patterns.

In [8] three different approaches to deal with time series are presented: (1) to work
directly with raw data, (2) to convert a raw series data into a feature vector of lower
dimension and (3) to represent the sequence with a certain number of model parameters.

V. Torra and Y. Narukawa (Eds.): MDAI 2008, LNAI 5285, pp. 134–145, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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The feature-based and model-based approaches permit to apply conventional algorithms
since there is no need to deal with the sequential data. However, sometimes it is not
possible to build those feature vectors or models. In this work we are interested in the
first approach, which requires to adapt the classical techniques in order to be able to
deal with the particularities of sequential data.

In this paper we consider the problem of measuring the similarity of two time se-
quences of items (i.e. events). Comparing elements is a basic key point in many meth-
ods for analysing data, such as clustering techniques (which build clusters of similar
objects), classification of objects into existing clusters, characterisation of prototypes,
recommender systems or decision making methods (such as those based on dominance
rough sets that consider dominance, indiscernibility and similarity relations [5]).

In [8] a survey of similarity/distance measures for sequential data is given. Nine
measures are defined and most of them can only be applied to numerical values. In the
examples of temporal sequences presented before, the items of the sequence are not
numbers but categorical values (places, web pages, proteins, etc.). Although sequences
of categorical values are very important nowadays, there still exist few attempts to work
with them due to the inherent complexity of dealing with non-numerical values.

In this paper we present a similarity measure between two categorical sequences that
is based on the comparison of the common items in the two sequences and the positions
where they appear.

First in section 2, a review of other approaches to similarity measurement in time
series is introduced. Section 3 presents different features that must be taken into ac-
count for working with sequences and then describes the type of sequences that we
have considered. In section 4 a new similarity function is defined. Section 5 shows a
case study where different similarity measures for sequences are compared. Finally,
section 6 gives the conclusions and outlines the future research lines.

2 Review of Dissimilarity Measures

A dissimilarity function d on two objects i and j must satisfy the following conditions:

1. Symmetry: d(i, j) = d( j, i)
2. Positivity: d(i, j) ≥ 0 for all i, j

If conditions:

3. Triangle inequality: d(i, j) ≤ d(i,k)+ d(k, j) for all i, j,k; and
4. Reflexivity: d(i, j) = 0 iff i = j

also hold, it is called metric or distance function.
Moreover, d is a normalized distance function if 0 ≤ d(i, j) ≤ 1 for all objects i

and j.
Dissimilarity functions can be classified according to the type of value they can deal

with into: numerical, categorical or mixed functions. In this section, some of the clas-
sical distance functions for static data are presented. After this, the existing distance
measures for sequential data are reviewed. The cases of numerical and categorical
information are presented separately.
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2.1 Dissimilarity Functions for Numerical Variables

In this section, we present the most commonly used dissimilarity functions for numeri-
cal variables. Let’s take two objects i and j represented by the corresponding vectors of
values i = (xi1, . . . ,xiK) and j = (x j1, . . . ,x jK).

Euclidean Distance. It is the sum of the squares of the differences of the values.

d2(i, j) = 2
√

∑K
k=1(xik − x jk)2 (1)

City-Block or Manhattan Distance. It is the sum of the absolute differences for all
the attributes of the two objects.

d1(i, j) = ∑K
k=1 |xik − x jk| (2)

Minkowski Distance. It is a generic distance which is defined as the q− th root of the
sum of powers q− th of absolute differences of the values of the two objects. Note
that the Euclidean distance and Manhattan distance are particular cases for q = 2
and q = 1, respectively.

dq(i, j) =
(
∑K

k=1 |xik − x jk|q
) 1

q
(3)

With respect to sequences of numerical values, the most common similarity measures
are the following ones (in [8] these and other approaches are presented):

Short Time Series Distance. It is the sum of the squared differences of the slopes in
two time series being compared.

dST S(i, j) = 2

√√√√∑K
k=1

(
x j(k+1) − x j(k)

t(k+1) − t(k)
−

xi(k+1) − xi(k)

t(k+1) − t(k)

)2

(4)

where tk is the time point for data values xik and x jk

Dynamic Time Warping Distance. It consists in the alignment of two series Q =
(q1,q2, ...,qn) and R = (r1,r2, ...,rm) in order to minimize their difference. To this
end, an n ·m matrix is built, where the (i, j) element of the matrix contains the dis-
tance d(qi,r j) (generally Euclidean distance). A warping path W = w1,w2, ...,wK

is calculated, where max(m,n) ≤ K ≤ m + n − 1 . Then, the minimum distance
between the two series is calculated as:

dDTW (i, j) = min

(
∑K

k=1 wk

K

)
(5)
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2.2 Dissimilarity Functions for Categorical Variables

Now, the case of categorical variables for static and sequential data is outlined. For the
static case, the following two distances are well-known:

Chi-Squared
(
χ2
)

Distance. It is based on the number of objects in the dataset that
have the same value than object i for the k-th variable, Iki.

χ2(i, j) = ∑K
k=1 dk(i, j) (6)

where dk(i, j) is 0 when xik = x jk and
(

1
Iki

+ 1
Ik j

)
otherwise.

Hamming Distance. It is the number of positions where the two objects are different.
It is limited to cases when they have identical lengths.

dH(i, j) = ∑K
k=1 dk(i, j) (7)

where dk is 0 when xik = x jk and 1 if xik �= x jk.
In the case of sequences of categorical values, there are three approaches: Hamming

distance (an extension of eq. 7), String metrics and Alignment-based distances.
With respect to String metrics, we have:

Edit or Levenshtein Distance. It calculates the minimum number of edit operations to
transform S1 into S2, where an edit operation is an insertion, deletion or substitution
of a single character.

Damerau-Levenshtein Distance. A modification of Levenshtein distance adding the
transposition operation, which is a function that swaps two elements of a sequence.

Kullback-Liebler Divergence. It measures the difference between two probability dis-
tributions.

dKL(i, j) = ∑K
k=1(Pi(x|X)−Pj(x|X))log

(
Pi(x|X)
Pj(x|X)

)
(8)

where Pi denote the conditional probability distribution for Si

Otherwise, sequence alignment comes from ADN, RNA or protein sequences stud-
ies. The main characteristic of all these cases is that elements of the sequences are
characters. In this case, methods are based on the Dynamic Time Warping Distance
(see eq. 5). A more detailed analysis can be found at [9,11,12].

3 Description of the Data Sequences to Compare

As it usually happens in many Artificial Intelligence techniques, the nature of the val-
ues in the data set determines the characteristics of the method that can be applied. The
usual main classification distinguishes: numerical values versus categorical values. Nu-
merical scores can be continuous, discrete or intervals, and can represent quantitative
measurements, ratios or ordinal scales. Categorical values represent qualitative features
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with ordered or unordered scales [7]. But, in fact, there are other data representations
that can be considered as textual, spatial, image or multimedia.

As fas as temporal series are concerned, other distinctions must be done as to whether
the data is uniformly or non-uniformly sampled, univariate or multivariate, and whether
the sequences are of equal or unequal length [8].

In this work we want to deal with sequences of events that represent the behaviour of
the user in a particular context. For example tourists visiting a city, where the sequences
show the itinerary that each person has followed to visit the interesting locations in this
city. A private real data set of tourists’ itineraries provided by Dr. Shoval has been tested.
This data set is about a city with 25 interesting places and has about 40 itineraries with
lengths that range from 10 to 30 items.

Another data set we have considered is the list of sequences of visits at the Microsoft
web page. The data was obtained by sampling and processing the www.microsoft.com
logs. The data set records the use of 38000 anonymous, randomly-selected users. For
each user, the data lists all the areas of the web site (Vroots) that he/she visited in a one
week time-frame. The number of Vroots is 294, and the mean number of Vroots visits
per user is 3. This data is publicly available at the UCI Machine Learning
Repository [2].

These two examples of event sequences have the following common characteristics:

· Events are categorical values that belong to a finite set of linguistic labels (city
locations, web pages).

· The sequences have been uniformly sampled in the sense that time slopes are not
taken into account.

· The sequences are univariate, only one concept is studied.
· The lengths of the sequences of the individuals are not equal.
· Events can be repeated in the sequence (for example, a certain tourist visited the

same place, Main Street, more than one time during his holidays).

To facilitate the analysis of the results, the categorical values indicating places or web
pages have been substituted by simpler identifiers. An example of 14 different event
sequences is given in Table 1. Each character may represent a physical place or a web
page.

Table 1. Example of data sequences

Id Sequence
1 a b
2 b c
3 a b c
4 c a b
5 d a b c
6 e d a b c
7 f e d a b c

Id Sequence
8 c g d a b c
9 d
10 d a
11 d b
12 c b c b c b
13 b c b c b c
14 e b e b e b
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4 A New Similarity Measure: Ordered-Based Sequence Similarity

The similarity measures for sequences of categorical values presented in section 2
are quite simple and are not adequate to deal with temporal event sequences like the
web logs or the tourists’ itineraries. To compare this type of sequences two issues are
important:

1. The number common elements in the two sequences
2. The order between the common elements

The former allows us to measure if the two individuals have done the same things,
that is, if they have visited the same web pages or have gone to the same places. The
latter takes into account the temporal sequence of the events, that is, if two tourists have
visited the Main Street after going to the City Hall or not. This second measure should
also take into account if two events have taken place consecutively or not.

For example, let T 1 and T 2 be tourists who have visited some places of the same
city: T1 = {a,b,c} and T 2 = {c,a,b,d}. Notice that, there are 3 common places and
also they have visited a before b. So, we could say that they are quite similar.

In this paper we present a new approach to calculate the similarity that takes into
account these two aspects. It is called Ordering-based Sequence Similarity (OSS) and
consists, on one hand, in finding the common elements in the two sequences, and on
the other hand, in comparing the positions of the elements in both sequences. The ‘el-
ements’ that are the basis of this measure can be either single events or sub-sequences
of events that are considered as an indivisible groups (i.e patterns). In case of working
with patterns, they must have a minimum length of two and a maximum length equal to
the shortest sequence.

Definition 1. Let i and j be two sequences of items of different lengths, i = (xi,1, . . . ,
xi,card(i)) and j = (x j,1, . . . ,x j,card( j)). Let L = {l1, ..., ln} be a set of n symbols to rep-
resent all the possible elements of those sequences (L is called a language). Then, the
Ordering-based Sequence Similarity (OSS) is defined as:

dOSS(i, j) =
f (i, j)+ g(i, j)

card(i)+ card( j)
(9)

where
g(i, j) = card({xik|xik /∈ j})+ card({x jk|x jk /∈ i}) (10)

and

f (i, j) =
∑n

k=1(∑
∆
p=1 |i(lk)(p)− j(lk)(p)|)

max{card(i),card( j)} (11)

where i(lk) = {t|i(t) = lk} and ∆ = min(card(i(lk)),card( j(lk))).

This function has two parts, g is counting the number of non common elements, and f
measures the similarity in the position of the elements in the sequences (the ordering).
The function f is calculated in the symbols space L. So, first, each event in the sequence
i is projected into L, obtaining a numerical vector fore each symbol: i(l1)..i(ln). Each of
these new vectors store the positions of the corresponding symbol in the sequence i.
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The same is done with sequence j, obtaining j(l1).. j(ln). Then the projections of the two
sequences i and j into L are compared, and the difference in the positions is calculated
and normalised by the maximum cardinality of the sequences i and j.

If two sequences are equal, the result of dOSS is zero, because the positions are always
equal ( f = 0) and there are not uncommon elements (g = 0). Oppositely, if the two
sequences do not share any element, then g = card(i)+ card( j) and f = 0, and dOSS

is equal to 1 when it is divided by card(i)+ card( j). The Ordering-based Sequence
Similarity function always gives values between 0 and 1.

The function has the following properties:

· Symmetry: dOSS(i, j) = dOSS( j, i)
· Positivity: dOSS(i, j) ≥ 0 for all i, j
· Reflexivity: dOSS(i, j) = 0 iff i = j

However, it does not fulfil the triangle inequality: dOSS(i, j) ≤ dOSS(i,k)+dOSS(k, j) for
all i, j,k. From these properties, it is clear that dOSS is a dissimilarity but not a distance.

Proof. The proof of Symmetry, Positivity and Reflexivity is trivial by Definition 1. The
Triangle Inequality does not hold. This is proven in the following counterexample.

Let A, B and C be three sequences defined by A = {b,c}, B = {d,a} and C =
{d,a,b,c}. In this case, dOSS(A,B) = 1.0 because they do not share any item. However,
dOSS(A,C) = 0.5 because they have two elements in common. B and C also have other
two common elements (and they are also in the same position), so dOSS(B,C) = 0.33.
Consequently, dOSS(A,C)+ dOSS(B,C) = 0.83 which is less than dOSS(A,B) that is 1.0,
which proofs that the triangle inequality is not fulfilled. ��
As it has been pointed out, this measure can be applied to different items: single events
or groups of events. Having a sequence {a,b,a,c,d}, in the first case, i = (a,b,a,c,d),
so xi j is any individual event in the sequence. In the second case, i = (ab,ba,ac,cd), so
xi j is any pair of consecutive items, and i = (aba,bac,acd), for triplets.

The following example illustrate how dOSS is calculated for single events (dOSS−1)
and for pairs of events (dOSS−2). Let us take the two following sequences: A = {a,b,c,a},
B = {c,a,d,b,c,a,c}, with cardA = 4 and cardB = 7.

The similarity considering single items gives dOSS−1(A,B) = 0.36. This result is
obtained in the following way: symbols a, b and c are common in both sequences
A and B. The projection on the symbol a are: A(a) = {0,3} and B(a) = {1,5}, so
fa(A,B) = |0 − 1|+ |3 − 5|= 3. For symbol b: A(b) = {1}, B(b) = {3} and fb(A,B) =
|1−3|= 2. For c: A(c) = {2}, B(c) = {0,4,6} and fc(A,B) = |2−0|= 2. So, f (A,B) =
fa(A,B)+ fb(A,B)+ fc(A,B)

7 = 1. Calculating the non common elements, we have g(A,B) = 3.

Finally, dOSS−1(A,B) = f (A,B)+g(A,B)
4+7 = 1+3

11 = 0.36.
Considering the same case example with patterns of length 2, we have a greater

dissimilarity, dOSS−2(A,B) = 0.629. In this case, the sequences are A′ = {ab,bc,ca}
and B′ = {ca,ad,db,bc,ca,ac} with cardinalities 3 and 6. They share 2 elements, for
the bc pair we have A(bc) = {1}, B(bc) = {3} and fbc(A,B) = |1 − 3| = 2, while for
the pair ca: A(ca) = {2}, B(ca) = {0,4} and fca(A,B) = |2 − 0| = 2. So, f (A,B) =
fbc(A,B)+ fca(A,B)

6 = 0.66. Calculating the non common elements, we have g(A,B) = 5.

Finally, dOSS−2(A,B) = f (A,B)+g(A,B)
3+6 = 0.66+5

9 = 0.629.
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5 Experiments

In this section we present the results obtained with a test set of 14 registers, corre-
sponding to the event sequences presented in Table 1. This dataset contains sequences
of different lengths. Register 9 is an extreme case, with a single event in the sequence.
Sequences in registers 12, 13 and 14 show the case of having repeated events.

We have tested the Ordering-based Sequence Similarity considering each event sep-
arately, OSS-1 (Table 2) and with patterns of two events, OSS-2 (Table 3).

Notice that the OSS applied to pairs of events gives higher dissimilarity values in
many cases (see the number of 1’s in Table 3). This is due to the fact that finding
common pairs of events is much more difficult than finding common single events.

For OSS-2, the sequences in the register id=6 {e,d,a,b,c} and id=7 { f ,e,d,a,b,c}
are the most similar ones (0.19), because they share 4 common pairs in very similar
positions (ed,da,ab,bc) and 1 uncommon pair ( f e). The next ones are id=5 {d,a,b,c}
and id=6 that have 3 common pairs and 1 uncommon pair. And in third place we find
sequences id=12 {c,b,c,b,c,b} and id=13 {b,c,b,c,b,c}, that also share 4 common
pairs and 2 uncommon ones.

On the contrary, OSS-1 considers that similarity between registers id=12 and id=13
is higher (0.08) that the one between id=6 and id=7 (0.19). This is because in the first
case there are 6 common symbols (all) and in the second case there are only 5 common
symbols and 1 uncommon. From our point of view, OSS-1 is able to better capture
the degrees of similarity for the sequences of events than the OSS-2, since it is not so
important that they happen together than in similar positions.

After analysing the OSS results, the behaviour of the OSS function has been com-
pared to the Edit Distance, which is a measure that is quite popular for comparing
sequences [4]. The Edit Distance counts the number of changes needed to be applied on

Table 2. Results of the OSS applied to individual events (OSS-1)

Id.Reg. 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 0 0.62 0.2 0.33 0.41 0.54 0.62 0.62 1 0.62 0.5 0.75 0.77 0.75
2 0.62 0 0.33 0.4 0.5 0.59 0.66 0.60 1 1 0.62 0.54 0.5 0.77
3 0.2 0.33 0 0.22 0.25 0.4 0.5 0.48 1 0.66 0.6 0.59 0.59 0.77
4 0.33 0.4 0.22 0 0.25 0.4 0.5 0.40 1 0.6 0.66 0.57 0.61 0.79
5 0.41 0.5 0.25 0.25 0 0.19 0.33 0.35 0.6 0.33 0.37 0.66 0.66 0.81
6 0.54 0.59 0.4 0.4 0.19 0 0.16 0.37 0.7 0.48 0.51 0.72 0.72 0.66
7 0.62 0.66 0.5 0.5 0.33 0.16 0 0.40 0.76 0.58 0.60 0.77 0.77 0.72
8 0.62 0.60 0.48 0.40 0.35 0.37 0.40 0 0.76 0.58 0.60 0.58 0.59 0.87
9 1 1 1 1 0.6 0.7 0.76 0.76 0 0.33 0.33 1 1 1

10 0.62 1 0.66 0.6 0.3 0.48 0.58 0.58 0.33 0 0.5 1 1 1
11 0.5 0.62 0.6 0.66 0.37 0.51 0.60 0.60 0.33 0.5 0 0.75 0.77 0.75
12 0.75 0.54 0.59 0.57 0.66 0.72 0.77 0.58 1 1 0.75 0 0.08 0.5
13 0.77 0.5 0.59 0.61 0.66 0.72 0.77 0.59 1 1 0.77 0.08 0 0.54
14 0.75 0.77 0.77 0.79 0.81 0.66 0.72 0.87 1 1 0.75 0.5 0.54 0
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Table 3. Results of the OSS applied to pairs of events (OSS-2)

Id.Reg. 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 0 1 0.33 0.5 0.58 0.7 0.76 0.76 - 1 1 1 1 1
2 1 0 0.5 1 0.66 0.75 0.8 0.8 - 1 1 0.7 0.66 1
3 0.33 0.5 0 0.62 0.33 0.5 0.59 0.59 - 1 1 0.71 0.74 1
4 0.5 1 0.62 0 0.6 0.70 0.77 0.77 - 1 1 1 1 1
5 0.58 0.66 0.33 0.6 0 0.25 0.4 0.4 - 0.5 1 0.77 0.8 1
6 0.7 0.75 0.5 0.70 0.25 0 0.19 0.39 - 0.65 1 0.82 0.84 1
7 0.76 0.8 0.59 0.77 0.4 0.19 0 0.4 - 0.73 1 0.86 0.88 1
8 0.76 0.8 0.59 0.77 0.4 0.39 0.4 0 - 0.73 1 0.86 0.88 1
9 - - - - - - - - - - - - - -

10 1 1 1 1 0.5 0.65 0.73 0.73 - 0 1 1 1 1
11 1 1 1 1 1 1 1 1 - 1 0 1 1 1
12 1 0.7 0.71 1 0.77 0.82 0.86 0.86 - 1 1 0 0.28 1
13 1 0.66 0.74 1 0.8 0.84 0.88 0.88 - 1 1 0.28 0 1
14 1 1 1 1 1 1 1 1 - 1 1 1 1 0

Table 4. Results according to the Edit Distance (ED)

Id.Reg. 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 0 1 0.33 0.33 0.5 0.6 0.66 0.66 1 1 0.5 0.83 0.83 0.83
2 1 0 0.33 1 0.5 0.6 0.66 0.66 1 1 1 0.66 0.66 0.83
3 0.33 0.33 0 0.66 0.25 0.4 0.5 0.5 1 1 0.66 0.66 0.66 0.83
4 0.33 1 0.66 0 0.5 0.6 0.66 0.5 1 0.66 0.66 0.66 0.66 0.83
5 0.5 0.5 0.25 0.5 0 0.2 0.33 0.33 0.75 0.5 0.5 0.66 0.66 0.83
6 0.6 0.6 0.4 0.6 0.2 0 0.16 0.33 0.8 0.6 0.6 0.66 0.66 0.66
7 0.66 0.66 0.5 0.66 0.33 0.16 0 0.33 0.83 0.66 0.66 0.83 0.66 0.83
8 0.66 0.66 0.5 0.5 0.33 0.33 0.33 0 0.83 0.66 0.66 0.66 0.66 1
9 1 1 1 1 0.75 0.8 0.83 0.83 0 0.5 0.5 1 1 1

10 1 1 1 0.66 0.5 0.6 0.66 0.66 0.5 0 0.5 1 1 1
11 0.5 1 0.66 0.66 0.5 0.6 0.66 0.66 0.5 0.5 0 0.83 0.83 0.83
12 0.83 0.66 0.66 0.66 0.66 0.66 0.83 0.66 1 1 0.83 0 0.33 0.5
13 0.83 0.66 0.66 0.66 0.66 0.66 0.66 0.66 1 1 0.83 0.33 0 0.66
14 0.83 0.83 0.83 0.83 0.83 0.66 0.83 1 1 1 0.83 0.5 0.66 0

one sequence to obtain another one. To scale the values into the unit interval, we have
divided the number of changes by the length of the longest sequence. Table 4 presents
the results of the normalised Edit Distance (ED) on the same data set.

The first significant difference in the results of Table 4 is the pair of registers that
achieves the minimum dissimilarity in each measure. ED considers that the most simi-
lar ones are {e,d,a,b,c} (id=6) and { f ,e,d,a,b,c} (id=7), because they are the longest
sequences with a single difference, the introduction of a new symbol. OSS-1 gives
the same similarity value to this pair, 0.16, but it finds another most similar pair of
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Table 5. Comparison of the results

Register
OSS-1 OSS-2 ED

MIN MAX MIN MAX MIN MAX
Id Seq Id Value Id Id Value Id Id Value Id
1 ab 3 0.2 9 3 0.33 2,10,11,12, 3,4 0.33 2,9,10

13,14
2 bc 3 0.33 9,10 3 0.5 1,4,10,11, 3 0.33 1,4,9,10,11

14
3 abc 1 0.2 9 1,5 0.33 10,11,14 5 0.25 9,10
4 cba 3 0.22 9 1 0.5 2,10,11,12, 1 0.33 2,9

13,14
5 dabc 6 0.19 14 6 0.25 11,14 6 0.2 14
6 edabc 7 0.16 12,13 7 0.19 11,14 7 0.16 9
7 fedabc 6 0.16 12,13 6 0.19 11,14 6 0.16 9,12,14
8 cgdabc 5 0.35 14 6 0.39 11,14 5,6,7 0.33 14
9 d 10,11 0.33 1,2,3,4,12, - - - 10,11 0.5 1,2,3,4,12,

13,14 13,14
10 da 5,9 0.33 2,12,13,14 5 0.5 1,2,3,4,11, 5,9,11 0.5 1,2,3,12,

12,13,14 13,14
11 db 9 0.33 13 all 1.0 all 1,5,9,10 0.5 2
12 cbcbcb 13 0.08 9,10 13 0.28 1,4,10,11, 13 0.33 9,10

14
13 bcbcbc 12 0.08 9,10 12 0.28 1,4,10,11, 12 0.33 9,10

14
14 ebebeb 12 0.5 9,10 all 1.0 all 12 0.5 8,9,10

sequences: {c,b,c,b,c,b} (id=12) and {b,c,b,c,b,c} (id=13), which are the longest
sequences that share exactly the same symbols in very similar positions. In fact, they
have the same sequence {c,b,c,b,c} but adding b before or after it.

If we consider now the first row of the matrices, the one that compares the register
{a,b} (id=1) with the rest, it can be seen that the behaviour of the Edit Distance is
quite different from the one of the OSS-1. ED considers that sequence {a,b} (id=1) is
equally similar to {a,b,c} (id=3) and {c,a,b} (id=4). Whereas, OSS-1 considers that
the former is more similar to register id=1 because both individuals have started the
sequence doing the same event a, followed by b. And the difference is that the individual
id=1 has stopped and the other has continued one step more. However, sequence id=4
has not started doing the same event. This difference is able to be captured if the relative
ordering of the events is considered.

This difficulty to distinguish two sequences that have different items than two se-
quences that have the different items but in different order is the main drawback of the
Edit Distance [13]. An extreme case is the result given with sequences like {a,a,b,b}
and {b,b,a,a}. ED will give a dissimilarity of 4 changes (or 1 if it is normalised). In
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this case OSS-1 clearly improves ED giving a dissimilarity value of 0.125, which is
more like what common sense would indicate.

To make a deeper analysis of the behaviour of the similarity matrix for clustering
purposes, it is needed to identify which is the closest sequence to a given one. Table 5
shows the identifier of the register/s with minimum dissimilarity to each of the 14 case
studies, for the 3 measures. Also the corresponding dissimilarity value that links those
pairs of sequences is given. Finally, the sequence with maximum dissimilarity is shown.

An analysis of the table suggests that the dissimilarity function OOS-1 is more pre-
cise than ED and OOS-2 to determine the minimum and maximum values. It usually
identifies unique values.

6 Conclusions and Future Work

In this paper we have proposed a new measure of dissimilarity for sequences of cate-
gorical values that considers two main criteria: which are the common and not common
symbols, and which is the difference in the ordering of the common symbols in both
sequences. The rationale for establishing these criteria is that the sequences to be com-
pared contain an ordered list of events (f.i. an itinerary that indicates the places visited
by a tourist), and we are interested in capturing this sequentiality of the items.

The paper shows that, for event sequences, the Ordering-based Sequence Similarity
(OOS) gives better results than the Edit Distance. The results show that OSS is a proper
approach to prioritize both the number of common elements as its order. It can also be
easily seen that OSS also behaves better than the Hamming distance, which compares
the sequences position by position and charge each mismatch 1 unit in the dissimilarity
value without taking into account if the symbol appears in other nearer position. One of
the future analysis to be done is a comparison with the alignment-based approaches.

We are now interested in using the Ordering-based Sequence Similarity for cluster-
ing. Building clusters is interesting in many problems, as it has been mentioned in the
introduction. It can be used to learn the underlying structure of a domain. In this sense,
clustering of event sequences can lead to identify groups of individuals that behave in a
similar way [3]. Other use of clustering methods in which we are particularly interested
in is the field of privacy preserving. Microaggregation is one of the standard tools for
numerical database protection commonly in use in National Statistical Offices. In the
last years, research on the protection of numerical time series has started [10], due to
the increasing number of sequence data available, as argued in the introduction of this
paper. The OSS similarity is a first step towards the extension of microaggregation to
the case of categorical event sequences.
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Abstract. Suppressed fuzzy c-means (s-FCM) clustering was
introduced in [Fan, J. L., Zhen, W. Z., Xie, W. X.: Suppressed fuzzy
c-means clustering algorithm. Patt. Recogn. Lett. 24, 1607–1612 (2003)]
with the intention of combining the higher speed of hard c-means (HCM)
clustering with the better classification properties of fuzzy c-means
(FCM) algorithm. They modified the FCM iteration to create a com-
petition among clusters: lower degrees of memberships were diminished
according to a previously set suppression rate, while the largest fuzzy
membership grew by swallowing all the suppressed parts of the small
ones. Suppressing the FCM algorithm was found successful in the terms
of accuracy and working time, but the authors failed to answer a series of
important questions. In this paper we clarify the view upon the optimal-
ity and the competitive behavior of s-FCM via analytical computations
and numerical analysis.

Keywords: fuzzy c-means algorithm, suppressed fuzzy c-means algo-
rithm, competitive clustering, alternating optimization.

1 Introduction

Fuzzy logic [19] has successfully penetrated the theory of data clustering. It
took several important steps until Bezdek [5] reached the alternative optimiza-
tion (AO) solution of fuzzy clustering, named fuzzy c-means algorithm (FCM),
which improved the partition performance of the previously existing hard c-
means clustering (HCM) by extending the membership logic.

FCM outperformed HCM in the terms of partition quality, at the cost of a
slower convergence. In spite of this drawback, FCM is one of the most popular
clustering algorithms not only in engineering studies, but also in a series of
sciences from biology to sociology.

Several researchers have studied the convergence speed of FCM and tried
to introduce modified algorithms with improved characteristics [6,12]. Another
trend was to combine competitive and FCM clustering techniques. In this or-
der, several new algorithms appeared which tried to fuzzify Kohonen’s learning

V. Torra and Y. Narukawa (Eds.): MDAI 2008, LNAI 5285, pp. 146–157, 2008.
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vector quantization (LVQ) algorithm [14,18]. Karayiannis and Bezdek [13] in-
troduced an integrated approach to fuzzy LVQ and FCM, based on the notion
of generalized mean of real numbers. These algorithms, even if their main goal
wasn’t to improve the convergence of accurate clustering techniques, they had a
considerable contribution.

Later, Wei and Xie [16] proposed a technique called rival checked FCM to
modify the fuzzy membership values given by FCM, in order to improve the
performance against the clock. Their solution, which rose the highest degree of
membership at the detriment of the second largest, led to unacceptable results
in some cases. In order to confront this problem, Fan et al. [7] introduced the
suppressed fuzzy c-means algorithm (s-FCM). The authors stated that, by priz-
ing the highest membership and suppressing all others, the modification does
not disturb the original order among clusters. They also remarked, that setting
the suppression rate α = 0 makes s-FCM and HCM identical, while α = 1 re-
duces the algorithm to the conventional FCM. The s-FCM algorithm was found
successful based on some numerical analysis, but unfortunately, the authors left
several issues wide open:

1. They failed to prove whether s-FCM is optimal in any sense, that is, whether
it minimizes any kind of objective function.

2. The extra step of s-FCM was inspired by the basis of competitive learning [7],
but the authors failed to give any evidence of its competitive behavior.

3. The authors found s-FCM clustering insensitive to the fuzzyfication para-
meter m, based on a few experiments. However, since the competitivity of FCM
is controlled using m [5,8], this cannot be the established so easily.

4. The authors failed to provide any strategy to choose the suppression rate α.
This was already pointed out by Hung et al. [10,11], who formulated a criterion
for α based on considerations regarding cluster validity.

Very recently, Xie et al. introduced a novel possibilistic c-means clustering [17]
algorithm that interprets the fuzzy membership gap produced by s-FCM between
the winner and non-winner clusters similarly to the symmetrical margin between
classes provided by support vector machines [15,4] in supervised classification
problems.

This paper assumes to investigate the main issues of the suppressed FCM
algorithm listed above. The rest of this paper is structured as follows. Chapter 2
presents the background works that have impact on our investigations. Chapter 3
contains the analytical computations performed in order to reveal the properties
of s-FCM. Chapter 4 gives a numerical analysis of the properties of s-FCM.
Conclusions are given in the last chapter.

2 Background

2.1 Fuzzy C-Means

The fuzzy c-means algorithm has successful applications in a wide variety of
clustering problems. The traditional FCM partitions a set of object data into a
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number of c clusters based on the minimization of a quadratic objective function.
The objective function to be minimized is:

JFCM =
c∑

i=1

n∑
k=1

um
ik||xk − vi||2 =

c∑
i=1

n∑
k=1

um
ikd2

ik , (1)

where xk represents the input data (k = 1 . . . n), vi represents the prototype or
centroid value or representative element of cluster i (i = 1 . . . c), uik ∈ [0, 1] is
the fuzzy membership function showing the degree to which datum vector xk

belongs to cluster i, m > 1 is the fuzzyfication parameter, and dik represents the
distance between vector xk and cluster prototype vi. According to the definition
of fuzzy sets, for any input vector xk, we have

c∑
i=1

uik = 1 . (2)

The minimization of the objective function is reached by alternately applying the
optimization of JFCM over {uik} with vi fixed, i = 1 . . . c, and the optimization
of JFCM over {vi} with uik fixed, i = 1 . . . c, k = 1 . . . n [9]. During each cycle,
the optimal values are computed from the zero gradient conditions, and obtained
as follows:

u

ik =

d
−2/(m−1)
ik

c∑
j=1

d
−2/(m−1)
jk

∀ i = 1 . . . c, ∀ k = 1 . . . n , (3)

v

i =

n∑
k=1

um
ikxk

n∑
k=1

um
ik

∀ i = 1 . . . c . (4)

According to the alternative optimization (AO) scheme, formulae (3) and (4)
are alternately applied, until cluster prototypes stabilize.

2.2 Hard C-Means Clustering

The main difference between hard c-means and fuzzy c-means clustering is the
membership logic. While in case of fuzzy clustering, the degree of membership
of a vector xk to cluster i, denoted by uik, can take any value between 0 and 1,
hard clustering uses as degrees of membership only two values: 0 and 1. Although
the objective function of HCM is the same as the one of FCM, using m =
1, the optimization formula differs from Eq. (3): for any k = 1 . . . n, uik is
set to 1 whenever vi is the closest cluster prototype viewed from xk, and 0
in any different case. Ties are resolved arbitrarily. The computation of cluster
prototypes is performed according to Eq. (4).

The main advantage of FCM over HCM is that it improves partition perfor-
mance and reveals the classification data more reasonably [7]. However, FCM
also has the well-known disadvantage of slower convergence [5].
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2.3 Suppressed Fuzzy C-Means

The suppressed fuzzy c-means algorithm was introduced by Fan et al. [7], having
the declared goal of improving the convergence speed of FCM, while keeping its
good classification accuracy. They modified the alternative optimization scheme
of FCM, by inserting an extra computational step between the application of
formulae (3) and (4). This new step performs the following task: for each vector
xk, after having obtained its new optimal fuzzy membership values uik, we search
for the highest one uwkk, and declare cluster wk ∈ {1, 2, . . . , c} the winner. The
fuzzy memberships are then modified such a way, that all non-winner values are
decreased via multiplying by a so-called suppression rate α, (0 ≤ α ≤ 1), and
the winner membership is increased such a way, that the relation (2) is fulfilled
by the modified memberships. Therefore, the extra formula of s-FCM is:

µwkk = 1 − α
∑

j �=wk

ujk = 1 − α + αuwkk if i = wk , (5)

µik = αuik ∀i ∈ {1, 2, . . . , c} − {wk} , (6)

where µik, i = 1 . . . c, k = 1 . . . n, represent the fuzzy memberships obtained
with the modification introduced by the s-FCM algorithm.

Fan et al. did not give a recipe for choosing a suppression rate that is optimal
in any sense, or suitable for any any given purpose. They set the suppression
rate to the middle of the interval (α = 0.5), and found s-FCM insensitive to the
fuzzification parameter m.

3 What Is the Suppressed Fuzzy C-Means Algorithm?

In the following subsections, we will try to give some answers to the questions
previously formulated on the s-FCM algorithm. During the computations we
will suppose that 0 < α < 1, to avoid divisions by zero. These cases are trivial
anyway and need no investigation.

3.1 What Kind of Competition Does Suppression Introduce?

Fan et al. introduced the suppressed FCM algorithm on the basis of competitive
learning [7]. This is all they said about its competitive behavior. Obviously, when
the new fuzzy memberships of a vector xk is computed in a given iteration, there
is a competition among clusters, which makes the closest prototype win and all
others lose.

We will start the investigation at Eq. (3). When the new degrees of mem-
bership of vector xk are computed, everything depends on the distances dik,
i = 1 . . . c. If we change the scale of the metric such a way, that distances are
lengthened or shortened proportionally, the obtained memberships remain the
same. In other words, the ratio of two membership values, say uik/ujk does not
depend on the above mentioned scale.
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Conversely, when memberships to non-winner clusters are proportionally sup-
pressed via multiplying them by α, it can be interpreted as their distances from
vector xk remain constant, but as the winner cluster receives a higher degree
of membership, prototype vwk

is counted as it were closer to xk than it really
is. Again, in other words, when new cluster prototypes vi are computed us-
ing the weighted averaging formula in Eq. (4), based on the suppressed fuzzy
memberships, the vectors xk whose competition the currently computed proto-
type has won, are taken into consideration as they were at a reduced distance
d′wkk < dwkk, giving those vectors a higher impact than in FCM.

This reduced distance can be characterized with a learning rate η = 1 −
(d′wkk/dwkk), which will be computed in the followings. We will use the notations:

δik = d
2/(1−m)
ik ∀i = 1 . . . c, ∀k = 1 . . . n, and δ′wkk = γδwkk, where we expect

γ ≥ 1.
Using these new notations, we can rewrite (3) for both winner and non-winner

clusters. For the winner cluster we have:

µwkk =
γδwkk

γδwkk +
c∑

j=1,j �=wk

δjk

=
γδwkk

(γ − 1)δwkk +
c∑

j=1

δjk

, (7)

while the non-winner clusters receive the memberships:

µik =
δik

γδwkk +
c∑

j=1,j �=wk

δjk

=
δik

(γ − 1)δwkk +
c∑

j=1

δjk

. (8)

Now we can compare the suppressed memberships computed in (5) with (7),
and (6) with (8). From the former two we get:

(1 − α) + α
δwkk
c∑

j=1

δjk

=
γδwkk

(γ − 1)δwkk +
c∑

j=1

δjk

, (9)

which implies

(1 − α)(γ − 1)δwkk + (1 − α)
c∑

j=1

δjk + α(γ − 1)
δ2
wkk

c∑
j=1

δjk

+ αδwkk = γδwkk . (10)

From here we intend to compute γ, so we go on this way:

δwkk(γ − 1)

[
(1 − α) + α

δwkk∑c
j=1 δjk

− 1

]
= (1 − α)

⎡
⎣δwkk −

c∑
j=1

δjk

⎤
⎦ , (11)

which then becomes

α(γ − 1)

[
δwkk∑c
j=1 δjk

− 1

]
= (1 − α)

[
1 −
∑c

j=1 δjk

δwkk

]
. (12)
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Taking in consideration the relation uwkk = δwkk/
c∑

j=1

δjk, we get

(γ − 1)(uwkk − 1) =
(1 − α)(uwkk − 1)

αuwkk
. (13)

In FCM, the degree of membership assigned to the winner cluster uwkk = 1 only
if the input vector xk and the cluster prototype vwk

coincide. In this trivial case
there is no need to compute the suppression as there is nothing to suppress.
Excluding this trivial case, we may simplify the previous equation, so we get:

γ = 1 +
1 − α

αuwkk
. (14)

On the other hand, if we start from (6) and (8) we obtain:

δik

(γ − 1)δwkk +
c∑

j=1

δjk

= α · δik
c∑

j=1

δjk

. (15)

As δik is never zero, this equation can be restructured as follows:
c∑

j=1

δjk = α(γ − 1)δwkk + α

c∑
j=1

δjk , (16)

or

γ = 1 +
(1 − α)

c∑
j=1

δjk

αδwkk
= 1 +

1 − α

αuwkk
, (17)

which, according to Eqs. (5) and (6), can be further transcribed as:

γ = 1 +
1 − α

αuwkk
=

µwkk

αuwkk
=

µwkk

µwkk − (1 − α)
. (18)

So we obtained the same γ value both ways. Although this is not yet the learning
rate, we should discuss about the possible singularities:

– The degree of membership assigned by FCM to the winner class, uwkk, can-
not be zero, because then all other uik values would be zero, and that con-
tradicts the probability constraint of FCM.

– The suppression rate α can be zero, but that would reduce s-FCM to HCM,
which is a trivial case with strict winner-takes-all competition.

– As the suppression rate α and the winner cluster’s fuzzy membership are
both in the interval [0, 1], we indeed have γ ≥ 1. Equality holds when α = 1,
that is, there is no suppression.

We can conclude, that Eq. (18) is valid if 0 < α ≤ 1. Under these circumstances,
the learning rate of the s-FCM is:

ηs = 1 −
d′wkk

dwkk
= 1 − γ(1−m)/2 = 1 −

(
1 +

1 − α

αuwkk

)(1−m)/2

. (19)
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Fig. 1. Effect of sFCM’s suppression rate on the learning rate: (a) with uw = 0.8 and
different values of m; (b) with m = 2 and different values of winner membership uw

(right); (c) Learning rate of Os-FCM plotted against the suppression rate, with m = 2
and different values of winner membership uw

It was expected, that the fuzzyfication parameter m and the suppression rate
α influence the learning rate. In addition, another factor is present, namely the
fuzzy membership value of the winner cluster, uwkk. Some graphical representa-
tions of the learning rate vs. suppression rate are shown in Fig. 1. So far we can
conclude, that s-FCM has a quasi-competitive behavior with a variable learning
rate.

3.2 Is s-FCM Optimal? If so, What Does It Minimize?

Fan et al. [7] reported the fact, that s-FCM acts like HCM when the suppression
rate is set to α = 0, and to coincide with FCM when α = 1. What happens if
0 < α < 1, remains a question.

Let us consider from the beginning, that 0 < α < 1, as the two extreme
cases are trivial anyway and need no investigation. We can call s-FCM optimal
if we find an objective function, whose AO minimization gives the optimization
formulae:

µik = α · d
−2/(m−1)
ik

c∑
j=1

d
−2/(m−1)
jk

∀k = 1 . . . n ∀i �= wk , (20)

µwkk = 1 − α + α ·
d
−2/(m−1)
wkk

c∑
j=1

d
−2/(m−1)
jk

∀k = 1 . . . n, wk = argmin
i

{dik} , (21)

vi =

n∑
k=1

µm
ikxk

n∑
k=1

µm
ik

∀i = 1 . . . c . (22)



Analytical and Numerical Evaluation of the Suppressed FCM Algorithm 153

Unfortunately, this kind of analytical function is not likely to exist. There exists
at least one function, namely

Jnot s−FCM =
n∑

k=1

c∑
i=1

[µik − (1 − α)hik]md2
ik , (23)

which satisfies the first two conditions for any α ∈ (0, 1), but the generated
cluster prototypes coincide with the ones of FCM. Let us now propose a novel
approach for an optimal suppression and name it optimally suppressed fuzzy
c-means algorithm (Os-FCM):

JOs−FCM =
n∑

k=1

c∑
i=1

[αum
ik + (1 − α)hik]d2

ik , (24)

where α is a parameter that is intended to mix fuzzy and hard c-means clustering,
similarly to s-FCM, but creating a pure mixture of FCM and HCM. It is obvious,
that there are two values of α, where s-FCM and Os-FCM coincide: 0 and 1,
corresponding to HCM and FCM, respectively. In case of any other α, s-FCM
and Os-FCM differ. The AO iteration formulae of Os-FCM are easy to obtain
via the well-known technique of Lagrange multipliers. The update criteria we
obtain for uik and hik are the same as in case of FCM and HCM algorithms,
respectively. However, the update formula for cluster prototypes becomes:

vi =

n∑
k=1

[αum
ik + (1 − α)hik] xk

n∑
k=1

[αum
ik + (1 − α)hik]

∀i = 1 . . . c . (25)

In the followings, we will compare the s-FCM algorithm with our newly proposed
optimal clustering model, from two different points of view: (1) we will compute
the quasi-competitive learning rate of Os-FCM and compare it with the one of
s-FCM; (2) we will analyze the behavior of both algorithms by employing them
to cluster the IRIS data [1] with several different settings.

Using the notations defined at the computation of the learning rate of s-
FCM, and based on Eq. (25), we can write the following equation in these new
circumstances:

α

(
δwkk∑c
j=1 δjk

)m

+ (1 − α) =

(
γδwkk

(γ − 1)δwkk +
∑c

j=1 δjk

)m

, (26)

which represents the weighting coefficient received by a vector xk whose compe-
tition was won by cluster prototype vi. According to Eq. (3), we can transcribe
the following equation as:

αum
wkk + (1 − α) =

(
γuwkk

1 + (γ − 1)uwkk

)m

, (27)
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which is an expression that is difficult to solve analytically. Let us ease the
circumstances by setting m = 2, which then yields:

γ2u2
wkk = [1 − α + αu2

wkk][1 + (γ − 1)uwkk]2 . (28)

This leads to the following second order equation in γ:

αu2
wkk(1+uwkk)γ2−2uwkk[1−α+αu2

wkk]γ−(1−uwkk)[1−α+αu2
wkk] = 0 , (29)

which has only one acceptable (non-negative) solution:

γ =
1 − α + αu2

wkk +
√

1 − α + αu2
wkk

αuwkk(1 + uwkk)
. (30)

Let us verify the extreme values: if α → 0, then γ → ∞, which is what we

expected. Also, if we set α → 1, we get γ → u2
wkk+uwkk

uwkk(1+uwkk) = 1, which means zero
learning rate, corresponding to FCM. So the learning rate is given by:

ηOs = 1 − γ
1−m

2 = 1 −
√√√√ αuwkk(1 + uwkk)

1 − α + αu2
wkk +

√
1 − α + αu2

wkk

, (31)

its graphical representation is shown in Fig. 1(c). The curves on in this graph are
quite similar but not identical with the ones shown in Fig. 1(b). This is not yet
a proof for similar behavior of the two algorithms, this is what was possible to
show the analytical way. The comparison of s-FCM and Os-FCM should continue
with a numerical analysis.

4 Numerical Analysis

In the followings we will present some numerical analysis of the functional char-
acteristics of the suppressed FCM algorithm. These tests are performed using
the IRIS data [1], which consist of 150 labeled feature vectors of four dimensions,
and the high dimensional vectors of the WINE data set [3].

A series of numerical tests targeted the clustering accuracy. It is well-known
that the IRIS data cannot be perfectly classified without using the labels for
supervised learning. In case of unsupervised clustering, a deterministic misclas-
sification rate of 10% represents fine accuracy. In case of FCM, HCM, or s-FCM
this accuracy is reached only if an intelligent prototype initialization scheme is
applied. If the initial prototypes are not properly chosen, the algorithms might
fail [2]. It is well known, that FCM is less sensitive to initialization than HCM.

We have tested the clustering accuracy and robustness, intentionally using
a least smart initialization: randomly chosen input vectors, differing from each
other, were set as initial cluster prototypes. The left columns in Fig. 2 show the
confusion rate of s-FCM, meaning the percentage of cases when the clustering
failed, vs. the suppression rate α. These results suggest, that s-FCM requires the
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Fig. 2. Failure rate in case of random initialization, and the number necessary iterations
to reach a strict convergence criterion, represented vs. the suppression rate

Fig. 3. Average clustering score of s-FCM and Os-FCM, plotted against α

proper initialization as much as HCM does. If the initial prototypes are chosen
randomly, but choosing exactly one from each label class, then the confusion
rate reduces to zero for all FCM, HCM, and s-FCM.

The right columns of in Fig. 2 show the number of necessary iterations vs.
suppression rate, using the same threshold value in the stopping criterion. These
values are in full accordance to those found in [7]: a suitably chosen suppression
rate may reduce 2-3 times the necessary computation cycles. Taking into consid-
eration, that an efficient implementation uses a few percent more computations
to perform the fuzzy membership modification, we can conclude that suppressing
the FCM algorithms is a useful idea.

Now let us compare the main behavioral parameters of the two algorithm.
Figure 3 shows the clustering score (average number of correct decisions out of
150) of s-FCM and Os-FCM, averaged along several hundreds of tests performed
with different initialization. Figure 4 presents the average number of iterations
of s-FCM and Os-FCM, necessary to reach a given level of convergence. The
data represented here are also computed from hundreds of tests.
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Fig. 4. Average number of necessary iterations for s-FCM and Os-FCM to reach an
ε = 10−8 convergence, plotted against α

From the shape of the two graphs it is visible, that the two methods might
be related somehow. Not only the approximative values are similar for any α,
but also the shape of the graphs. The first graph indicates that the result of
clustering and the misclassification rate does depend on the initialization: the
clustering score can be either 133 or 134 in all cases.

Tests with multidimensional data have revealed, that Os-FCM reaches the
same convergence level in 4-5% less iterations, than s-FCM. Clustering accuracy
of both algorithms is at the same level.

The shape of the graphs in Fig. 3 suggests that there might be a direct relation
between αs and αOs. If s-FCM and Os-FCM were equivalent, then according to
Eqs. (5), (6), (4) and (25), we should have ∀uik ∈ [0, 1], ∀m > 1{

(αsuik)m = (αOsuik)m

(1 − αs + αsuik)m = (αOsuik)m + 1 − αOs
. (32)

In order to have any chance for equivalence between s-FCM(αs) and Os-FCM
(αOs), this equation system should be compatible. But this isn’t the case: the
only case of compatibility is m → 1 and αs = αOs. However, m → 1 is the case
of HCM, where there is nothing to suppress.

As a diagnosis of the suppressed FCM algorithm we can say: we cannot take
for granted the optimality or non-optimality of s-FCM, but we can assert that
it behaves very similarly to an optimal clustering model (Os-FCM).

5 Conclusions

In this paper we assumed to study the properties of the suppressed fuzzy c-
means algorithm. Based on analytical computations, we have exploited the quasi-
competitive behavior of s-FCM. On the other hand, using numerical analysis,
we have have shown, that s-FCM succeeded to inherit the quick convergence
of HCM, and the accuracy of FCM, but also has the disadvantage of being
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almost as sensitive to prototype initialization as HCM is. We have proposed an
optimal version of the suppressed FCM algorithm and compared the properties
of the two algorithms via analytical computations and numerical tests. Although
the two algorithms definitely differ, we found only slight differences between
their performance: Os-FCM should be favored mostly because of its guaranteed
optimality.

References

1. Anderson, E.: The IRISes of the Gaspe peninsula. Bull. Amer. IRIS Soc. 59, 2–5
(1935)

2. Arthur, D., Vassilvitskii, S.: k-means++: The advantages of careful seeding. In:
Proc. Symp. Discr. Alg., pp. 1027–1035 (2007)

3. Asuncion, A., Newman, D.J.: UCI Machine Learning Repository. University
of California, School of Information and Computer Science, Irvine (2007),
http://www.ics.uci.edu/∼mlearn/MLRepository.html
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Abstract. Although data clustering is relatively uninvestigated in
rough set studies, there are much room for applying clustering and re-
lated techniques to this field. In this paper we focus on generalization of
agglomerative clustering to information systems. A poset-valued hierar-
chical clustering is defined and the combination of traditional agglom-
erative clustering and lattice diagram of attributes in an information
system is considered. Inner product spaces are available to information
systems by using kernel functions in support vector machines. Differ-
ent algorithms for generalized agglomerative clustering using the inner
product are described. Illustrative examples are shown.

1 Introduction

Although rough sets [15,16] provide logical and analytical framework for classi-
fication, there is another area relatively unnoticed, that is, the concept of un-
supervised classification [3], alias data clustering [1,4]. Although a few studies
discuss clustering algorithms using rough set concepts [6,5], there are still many
research possibilities of which some possible directions are shown in [14].

The present paper discusses agglomerative clustering algorithms for informa-
tion systems [16]. The method of poset-valued hierarchical classification in [14]
is further generalized and the use of an inner-product space is considered, which
necessitates the introduction of a kernel function [17,18].

Two types of kernel functions are studied, one is based on an ordinary
Gaussian kernel which has an implicit mapping into a high-dimensional Euclid-
ean space [18], while the second has an explicit form of the mapping.

Moreover simple illustrative examples are given to grasp the concept of poset-
valued clustering.

The rest of this paper is organized as follows. In Section 2, we first review
agglomerative clustering that has an abstract formulation and its generalization
into poset-valued hierarchical classification. Section 3 discusses inner product
space for information systems that uses kernel functions for agglomerative clus-
tering. Section 4 proposes a fuzzy subset system to obtain a family of kernels.
Finally, Section 5 gives concluding remarks.
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Throughout this paper, proofs of the propositions are omitted, as they are
not difficult.

2 Generalization of Agglomerative Clustering

We first assume that the set of objects for clustering is denoted by T =
{t1, . . . , tn} and a generic object in T is also denoted by t ∈ T . A dissimilar-
ity measure d(t, t′) is assumed to be given between an arbitrary pair of objects
t, t′ ∈ T ; the way how a dissimilarity measure is defined will be discussed below.

A family of clusters of T denoted by G = {G1, . . . , GK} is a partition of T :

K⋃
i=1

Gi = T , Gi ∩ Gj = ∅ (i �= j).

Assume that an inter-cluster distance which will be discussed below is denoted
by d(Gi, Gj). Furthermore, we consider a family of clusters that depends on a
parameter α:

G(α) = {G1(α), . . . , GK(α)}.
Accordingly the inter-cluster distance is d(Gi(α), Gj(α)).

2.1 Dissimilarity in an Information System

An information system is assumed to have a form of a table in which each
row corresponds to an object tk, while each column indicates an attribute ai,
i = 1, . . . , m. The (k, i)-cell for an object tk and ai is denoted by vki = tk(ai).
The value vki can either be a nonnumeric symbol or numerical in general. We
assume vki is a nonnumeric symbol, but a numerical value can be handled in a
similar manner without difficulty.

For simplicity we assume that different attributes have different symbols: vki �=
vlj for i �= j.

A simple measure of dissimilarity is assumed to be given between two symbols
vki and vli for an attribute ai:

d(vki, vli; ai) =

{
1 (vki �= vli),
0 (vki = vli).

(1)

Moreover we define
d(tk, tl; ai) = d(tk(ai), tl(ai); ai) (2)

For the sake of convenience, The set of attributes is denoted by A =
{a1, . . . , am}. A subset of A is denoted by A′ = {ai, . . . , a	}, A′′, and so on.

The dissimilarity (2) is naturally extended to a subset A′:

d(t, t′; A′) =
∑

ai∈A′

d(t(ai), t′(ai); ai) (3)
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2.2 Agglomerative Clustering and Hierarchical Classification

A general procedure of agglomerative clustering is as follows [8,10].

1. Let the initial clusters be individual objects: Gk = {tk}. Let G =
{G1, . . . , GK}. Define inter-cluster distances as the distance between the
corresponding objects: d(Gi, Gj) = d(ti, tj). Let the number of clusters be
K = n.

2. Merge two clusters G′ = Gp ∪ Gq of the minimum distance:

(Gp, Gq) = argmin
i,j

d(Gi, Gj)

Add G′ to G and delete Gp and Gq from G. Reduce the number of clusters:
K ← K − 1. The minimum value is stored as the level of the merge mK :

mK = d(Gp, Gq) = min
i,j

d(Gi, Gj).

3. If K = 1, stop, else update the distances between the merged cluster and
other clusters d(G′, Gr), r = 1, . . . , K. Go to step 2.

There are several ways to update the distances in step 3, and accordingly we
have a number of methods of agglomerative clustering such as the single link,
the complete link, and the Ward method which we will discuss here. It has been
known that, in these methods, the level mK is monotone non-decreasing:

mn−1 ≤ mn−2 ≤ · · · ≤ m2 ≤ m1.

Assume α = mK . Then the next property is valid.
Proposition 1. For every α ≤ α′ and for each Gi(α′) ∈ G(α′) there exists
Gj(α) ∈ G(α) such that Gj(α) ⊆ Gi(α′).

2.3 Poset-Valued Hierarchical Classification

We generalize the last property and define a poset-valued hierarchical
classification.
Definition 1. Let P be a poset [7] of which the preorder is defined by 
. We say
G(α) = {G1(α), . . . , GK(α)} (α ∈ P ) is a poset-valued hierarchical classification
if for every α 
 α′ and for each Gi(α′) ∈ G(α′) there exists Gj(α) ∈ G(α) such
that

Gj(α) ⊆ Gi(α′).

We write G(α) � G(α′) if this property holds.
Example 1. Let P = 2A: the collection of subsets of A. P is then a lattice, i.e.,
a poset, by the natural inclusion of subsets.

Assume α = A′, a subset of A. Generate a cluster G(α) = G(A′):

t, t′ ∈ G(A′) ⇐⇒ d(t, t′; A′) = 0
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Table 1. An example of an information table

T D E F

t1 a1 b1 c1

t2 a1 b1 c2

t3 a1 b2 c1

t4 a1 b2 c2

t5 a2 b1 c1

t6 a2 b1 c2

t7 a2 b2 c1

It then is easy to see that the collection of G(A′) forms a poset-valued hierarchical
classification.

Example 2. Consider the seven tuples shown in Table 1 with the schema
A = (D, E, F ). Here these three letters are attributes. The poset is Λ =
2A = {∅, D, E, F, DE, DF, FE, DEF} where the abbreviated symbol DE im-
plies {D, E}, and so on. We have

G(DEF ) = {t1, . . . , t7},
G(DE) = {t1t2, t3t4, t5t6, t7}

etc. where titj is an abbreviated symbol for {ti, tj}.
Figure 1 shows the Hasse diagram of Λ = 2A together with the partitions

attached to each element of the lattice.

Example 3. Let us fix a subset A′ ∈ A and perform an agglomerative clustering
based on the dissimilarity d(t, t′; A′) using the single link method.

Let α be the pair of A′ and mK : α = (A′, mK), where mK is an arbitrary
level of the merge in the agglomerative algorithm. Then the all collection of α
forms a poset

P = (A, {mn1 , . . . , m1}) (4)

by the natural ordering:

α 
 α′ ⇐⇒ A′ ⊇ A′′, mK ≤ mK′ . (5)

Then, it is not difficult to see that the next proposition holds.

Proposition 2. The cluster generated at any α = (A′, mK) ∈ P using the single
link forms a hierarchical classification:

α 
 α′ ⇒ G(α) � G(α′).

Example 4. Figure 2 shows an illustration of Example 3 in which Table 1
and the single link is used. For each node of the Hasse diagram, a dendrogram
is attached. If no reversal in the dendrogram exists [8,10], then such a figure
defines a poset-valued classification in the above sense.
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Fig. 1. An example of the poset-valued clustering

3 Inner Product Space for Information Systems

Most methods of data analysis assume that the underlying space is a Euclid-
ean space, alias an inner product space. There are several ways to introduce a
Euclidean space to information systems.

The simplest way is to map each symbol to a Euclidean space of a high-
dimension: Suppose all symbols are v1, . . . , vp. They are mapped into Rp:

Ψ(v1) =
1
2
(1, 0, . . . , 0), Ψ(v2) =

1
2
(0, 1, 0, . . . , 0), . . . (6)

It is immediate to see

d(t, t′; ai) = d(t(ai), t′(ai)) = ‖Ψ(t(ai)) − Ψ(t′(ai))‖2. (7)

and hence
d(t, t′; A′) =

∑
ai∈A′

‖Ψ(t(ai)) − Ψ(t′(ai))‖2. (8)

Thus for a subset A′, the Cartesian product of the Euclidean space is the corre-
sponding space. The Ward method of agglomerative clustering assumes a Euclid-
ean space. Hence the above equality implies that the Ward method can be used
for the objects in T for any subset A′. We thus observe that the cluster generated
at α ∈ P using the Ward method forms a hierarchical classification as above.
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Fig. 2. An example of the poset-valued clustering with dendrograms

3.1 Kernel-Based Methods

Another approach to introduce an inner product space is to employ a kernel
function [18,17] which has been used in support vector machines [18].

We have the next proposition.
Proposition 3

K1(t, t′; A′) = exp(−γd(t, t′; A′)) (9)

is a positive-definite kernel function, where γ is a positive constant and d(t, t′; A′)
is given by (8).

The proof of the above proposition is given in [14]. Notice that K1(t, t′; A′) is
a kernel function for all A′ ∈ A.

The Ward Method Using Kernel Functions. It is well-known that the
single link, the complete link, and the average link can be used for any kind of
dissimilarity measure, while the Ward method is based on an Euclidean space.

The updating algorithm of the Ward method in Step 3 of the agglomerative
clustering is as follows [10].

d(G′, Gr) =
1

|Gp| + |Gq| + |Gr|

[
(|Gp| + |Gr|)d(Gp, Gr)

+ (|Gq | + |Gr|)d(Gq , Gr) − |Gr|d(Gp, Gq)
]

(10)
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It is easy to see that this updating equation can be used for any kernel function,
since a kernel function maps an object into a Euclidean space. Note also that
the initial dissimilarity values should be defined in terms of K(t, t′):

d(t, t′) =
1
2
{K(t, t) + K(t′, t′) − 2K(t, t′)}.

Proposition 4. The cluster generated at any α = (A′, mK) ∈ P using the Ward
method with a positive definite kernel forms a hierarchical classification:

α 
 α′ ⇒ G(α) � G(α′).

4 A Fuzzy Subset System for a Dissimilarity

An important generalization of the dissimilarity (3) is defined by introducing a
system of fuzzy subsets on T .

Let F	 (� = 1, . . . , H) be a system of fuzzy subsets on T . We define a nonneg-
ative definite kernel K2(t, t′) by

K2(t, t′) =
H∑

	=1

µF�
(t)µF�

(t′). (11)

It is immediate to see that the next proposition holds.

Proposition 5. K2(t, t′) is positive definite if and only if the set of vectors

(µF�
(t1), . . . , µF�

(tn)), � = 1, . . . , H

is linearly independent.
The proof is easy and omitted. We hereafter assume that the assumption on the
linear independence is satisfied.

Using this kernel, we define the norm of t and the distance between t and t′:

‖t‖2
K2

= K2(t, t) =
H∑

	=1

{µF�
(t)}2, (12)

‖t − t′‖2
K2

= K2(t, t) =
H∑

	=1

{µF�
(t) − µF�

(t′)}2. (13)

Accordingly, the dissimilarity using K2 is

dK2(t, t
′) = ‖t − t′‖2

K2
. (14)

We should apply this distance to an information system. For a given attribute
value v	 of a cell in an information system, we define µF�

(tk):

µF�
(tk) =

{
1 (∃ai, tk(ai) = v	),
0 (otherwise).

(15)
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Actually the above Fi is not fuzzy but a crisp set.
Then the dissimilarity is defined by

dK2(t, t
′; A′) = ‖t − t′‖2

K2
(16)

where attribute values v	 are limited to those in A′. We have

Proposition 6. The dissimilarity dK2(t, t
′; A′) given by (16) is equal to the first

dissimilarity (3).
Generally the dissimilarity (16) need not be identical to the one by (3), in other
words, Fi may be fuzzy and fuzziness is defined to express relatedness among
different attribute values.

We remind that a kernel-based method employs a nonlinear mapping Φ from
the object space into a high-dimensional inner product space. In this sense we
have three mappings:

1. First method using (6) uses Ψ(·) as the mapping Φ.
2. Second method using

K1(t, t′; A′) = exp(−γd(t, t′; A′))

uses an implicit mapping Φ, i.e., an explicit form of Φ is unavailable.
3. Third method uses

Φ(t) = (µF1(t), . . . , µFH (t)).

Thus the mapping Φ(t) is explicit.

Different algorithms should be used in accordance with the explicitness of the
mapping. Generally, more efficient algorithms can be used when the mapping
has explicit forms, as the first and third ones. For example, O(n3) order algo-
rithms should be used for an explicit mapping in the crisp and fuzzy c-means
clustering [1,9,10], while the algorithms with explicit mappings require O(n)
complexity [11,12,13]. Notice also that the updating formula (10) is valid for
both explicit and implicit mappings.

5 Conclusion

The concept of poset-valued agglomerative clustering has been discussed and the
use of kernel functions is considered. The kernel function embeds the objects in an
inner product space, whereby various methods of data analysis are applicable to
information systems in addition to clustering, although such an idea is different
from traditional approach in rough set studies. Hence such a method based on
continuity should be compared with traditional logical approaches in order to
uncover their intrinsic relations.

There seem to be a relation, e.g., in fuzzy subset systems, since a general-
ization of rough sets uses such a system of subsets whereby upper and lower
approximations can be defined. Moreover a subset system can be compared with
the concept of neighborhoods used in generalized rough sets [19] and modal logic
systems [2].

Future studies will include studies of theoretical relations with above studies,
and applications to real-world problems expressed as information systems.
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Abstract. In this paper, we propose new reducts in the dominance-
based rough set approach. The relations with previous ones are clarified.
Moreover, a comprehensive enumeration method of all kinds of reducts
is proposed. We show that all kinds of reducts are enumerated based on
two discernibility matrices associated with generalized decisions.

1 Introduction

Rough sets [6] have been applied to the analysis of decision tables. Because
of its usefulness, rough set approaches have been used in pattern recognition,
machine learning, knowledge discovery, medical informatics, decision analysis,
kansei engineering and so on [3,7]. The classical rough sets are defined using
the indiscernibility relation, i.e., an equivalence relation. In decision tables, the
indiscernibility relation implies that all attributes are nominal. However, in the
real world, we may face cases when some attribute values are ordinal. For ex-
ample, consider two test scores as condition attributes and the comprehensive
evaluation as the decision attribute, all attributes are ordinal. As in this exam-
ple, we may sometimes suppose the monotonicity between the decision attribute
and the condition attributes.

When we suppose a monotonicity between the decision attribute and the
condition attributes, the classical rough set approach developed for nominal at-
tributes is not sufficient as demonstrated by Greco et al. [2]. To overcome this
insufficiency, Greco et al. [2] proposed the dominance-based rough set approach
(DRSA). In DRSA, upward/downward unions of decision classes instead of de-
cision classes are approximated based on dominance relations instead of indis-
cernibility relations. The similar analysis to the classical rough set analysis can
be performed by DRSA.

The attribute reduction is also discussed in DRSA. By the attribute reduc-
tion, superfluous attributes are removed and we find important attributes as a
set of condition attributes called a reduct. Susmaga et al. [8] proposed reducts
preserving an information measure called a quality of sorting. Yang et al. [9]
have proposed four kinds of reducts preserving lower/upper approximations of
upward/downward unions of decision classes. Inuiguchi and Yoshioka [5] have
proposed several kinds of reducts preserving upper approximations, lower ap-
proximations, and/or boundary regions of upward and/or downward unions.

V. Torra and Y. Narukawa (Eds.): MDAI 2008, LNAI 5285, pp. 167–178, 2008.
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The four kinds of reducts by Yang et al. [9] are included in many kinds of
reducts by Inuiguchi and Yoshioka [5]. Those are called union-based reducts be-
cause they do not consider the approximations of decision classes but those of
upward/downward unions of decision classes. The relations among union-based
reducts have been investigated in [5] but the relations between the reduct by
Susmaga et al. [8] and union-based reducts have not yet.

In this paper, we define lower and upper approximations and boundary regions
of decision classes in DRSA and investigate reducts preserving those approxima-
tions and boundary regions. Because we consider the approximations of decision
classes, we call them class-based reducts. We investigate the relations among the
Susmaga’s reduct, union-based reducts and class-based reducts. Moreover, we
propose a comprehensive method enumerating all reducts based on the discerni-
bility matrices [7]. We show that all kinds of reducts can be enumerated by two
discernibility matrices associated with generalized decisions [1].

In next section, DRSA and previous reducts are reviewed. In Section 3, ap-
proximations of decision classes in DRSA are defined and the reducts based on
these approximations are proposed. Moreover, relations among many kinds of
reducts are investigated. In Section 4, giving reducts based on generalized deci-
sions, we show all kinds of reducts are enumerated by two discernibility matrices
associated with general decisions. Finally, we describe conclusions in Section 5.

2 Dominance-Based Rough Set Approach and Reducts

2.1 Dominance-Based Rough Set Approach (DRSA)

In DRSA [2,8], decision tables with order relations are analyzed. A decision
table is defined by a quadruple T = 〈U, C ∪ {d}, V, f〉, where U is a finite set of
objects (universe), C is a finite set of condition attributes, d �∈ C is a decision
attribute, Vq is the domain of the attribute q, V =

⋃
q∈C∪{d} Vq is a set of

attribute values and a total function f : U ×C ∪{d} → V such that ∀x ∈ U, ∀q ∈
C ∪ {d}, f(x, q) ∈ Vq is called an information function. In DRSA, we assume a
total order �d on Vd, a preorder �q on Vq for q ∈ Q ⊆ C, where a preorder
is a reflexive and transitive relation and a total order is a preorder satisfying
anti-symmetry and comparability. For the sake of simplicity, we write x �q y
instead of f(x, q) �q f(y, q) for q ∈ C ∪ {d}. As a background knowledge, we
assume a monotonicity such that x �q y for all q ∈ C implies x �d y.

The relation x �q y is interpreted as “x is at least as good as y with respect
to attribute q”. For P ⊆ C, we define a dominance relation �P by x �P y if
and only if ∀q ∈ P , x �q y, where x �P y implies that x dominates y with
respect to P . The decision attribute d partitions U into a set of decision classes
C = {Cl1, Cl2, ..., Cln}. For simplicity, we define T = {1, 2, ..., n}. We assume
s > t if and only if ∀x ∈ Cls, ∀y ∈ Clt, x �d y.

In DRSA, the following upward unions Cl≥t and downward unions Cl≤t of
decision classes are approximated by means of the dominance relation:

Cl≥t =
⋃
k≥t

Clk, Cl≤t =
⋃
k≤t

Clk, t ∈ T (1)
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We have Cl≥1 = Cl≤n = U , Cl≥t = U − Cl≤t−1 (t ≥ 2). Using dominance relation
�P (P ⊆ C), P -dominating set and P -dominated set are respectively defined by

D+
P (x) = {y ∈ U | y �P x}, D−

P (x) = {y ∈ U | x �P y}. (2)

P -lower and P -upper approximations of Cl≥t are respectively defined by

P (Cl≥t ) = {x ∈ U | D+
P (x) ⊆ Cl≥t }, P (Cl≥t ) = {x ∈ U | D−

P (x)∩Cl≥t �= ∅}. (3)

Similarly, P -lower and P -upper approximations of Cl≤t are defined by

P (Cl≤t ) = {x ∈ U | D−
P (x) ⊆ Cl≤t }, P (Cl≤t ) = {x ∈ U | D+

P (x)∩Cl≤t �= ∅}. (4)

The difference between the upper and lower approximations is called a bound-
ary region, the boundary regions BnP (Cl≥t ) and BnP (Cl≤t ) are defined by

BnP (Cl≥t ) = P (Cl≥t ) − P (Cl≥t ), BnP (Cl≤t ) = P (Cl≤t ) − P (Cl≤t ). (5)

2.2 Properties of Upper and Lower Approximations

Let P ⊆ C and t ∈ T . Then the upper and lower approximations and boundary
regions satisfy the following properties [2]:

P (Cl≥1 ) = P (Cl≥1 ) = U, P (Cl≤n ) = P (Cl≤n ) = U, (6)

P (Cl≥t ) ⊆ Cl≥t ⊆ P (Cl≥t ), P (Cl≤t ) ⊆ Cl≤t ⊆ P (Cl≤t ), (7)

P (Cl≥t ) = U − P (Cl≤t−1), P (Cl≤t−1) = U − P (Cl≥t ), (t ≥ 2) (8)

P (Cl≥t ) ∪ P (Cl≤t−1) = U, (t ≥ 2) (9)

BnP (Cl≥t ) = BnP (Cl≤t−1), (t ≥ 2) (10)

P (Cl≥t ) = BnP (Cl≥t ) ∪ Cl≥t , P (Cl≤t ) = BnP (Cl≤t ) ∪ Cl≤t , (11)

P (Cl≥t ) = Cl≥t − BnP (Cl≥t ), P (Cl≤t ) = Cl≤t − BnP (Cl≤t ). (12)

Let P, Q ⊆ C and s, t ∈ T . Then, we have the following monotonicity properties:

s ≥ t ⇒ P (Cl≥s ) ⊆ P (Cl≥t ), s ≤ t ⇒ P (Cl≤s ) ⊆ P (Cl≤t ), (13)

s ≥ t ⇒ P (Cl≥s ) ⊆ P (Cl≥t ), s ≤ t ⇒ P (Cl≤s ) ⊆ P (Cl≤t ), (14)

Q ⊆ P ⇒ Q(Cl≥t ) ⊆ P (Cl≥t ), Q ⊆ P ⇒ Q(Cl≤t ) ⊆ P (Cl≤t ), (15)

Q ⊆ P ⇒ Q(Cl≥t ) ⊇ P (Cl≥t ), Q ⊆ P ⇒ Q(Cl≤t ) ⊇ P (Cl≤t ). (16)

2.3 Generalized Decision

The generalized decision [1] plays an important role in discernibility matrices
described in Section 4. Let P ⊆ C and x ∈ U . Then P -generalized decision
δP (x) is defined by δP (x) = 〈lP (x), uP (x)〉, where we define

lP (x) = min{t ∈ T | D+
P (x) ∩ Clt �= ∅}, (17)

uP (x) = max{t ∈ T | D−
P (x) ∩ Clt �= ∅}. (18)
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δP (x) shows the interval of decision classes to which x may belong. lP (x) and
uP (x) are the lower and upper bounds of the interval. lP (x) and uP (x) are
monotone with respect to the inclusion relation between condition attribute
sets. Namely, for Q, P ⊆ C and x ∈ U , we have

Q ⊆ P ⇒ lQ(x) ≤ lP (x), uQ(x) ≥ uP (x). (19)

Using δP (x), the lower and upper approximations are represented as

P (Cl≥t ) = {x ∈ U | lP (x) ≥ t}, P (Cl≤t ) = {x ∈ U | uP (x) ≤ t}, (20)

P (Cl≥t ) = {x ∈ U | uP (x) ≥ t}, P (Cl≤t ) = {x ∈ U | lP (x) ≤ t}. (21)

2.4 Previous Reducts in DRSA

Attribute reduction is one of major topics in the rough set approach. By the
method, superfluous attributes are removed so that we may find important at-
tributes as a set of attributes called a reduct.

In DRSA, a few approaches to attribute reduction have been already proposed.
Susmaga et al. [8] proposed the reduct preserving the quality of sorting γP (C),
where for P ⊆ C, γP (C) is defined by

γP (C) =
|U −

⋃
t∈T BnP (Cl≤t )|

|U | =
|U −

⋃
t∈T BnP (Cl≥t )|

|U | . (22)

In this paper, we call this reduct a Q-reduct. Yang et al. [9] proposed four kinds
of reducts for an incomplete decision table with dominance relations. They are
reducts preserving lower/upper approximations of upward/downward unions.
Inuiguchi and Yoshioka [5] proposed several kinds of reducts and investigated
their relations. They are reducts preserving only lower approximations, only up-
per approximations, both lower and upper approximations and boundary regions
of upward/downward unions. Inuiguchi and Yoshioka showed that they are only
three different kinds. Four kinds of reducts by Yang et al. [9] are same as four
kinds of reducts by Inuiguchi and Yoshioka [5]. Since those reducts are based on
upward and downward unions, they are called union-based reducts [5].

Let us show the definitions of the previously proposed reducts.

Definition 1. (Q-reduct) A set P ⊆ C is called a Q-reduct if and only if

(Q1) γP (C) = γC(C) and
(Q2) � ∃Q ⊂ P such that γQ(C) = γP (C).

Definition 2. (L≥-reduct) A set P ⊆ C is called an L≥-reduct if and only if

(L1≥) P (Cl≥t ) = C(Cl≥t ) for all t ∈ T , and
(L2≥) � ∃Q ⊂ P such that Q(Cl≥t ) = P (Cl≥t ) for all t ∈ T .

Definition 3. (L≤-reduct) A set P ⊆ C is called an L≤-reduct if and only if

(L1≤) P (Cl≤t ) = C(Cl≤t ) for all t ∈ T , and
(L2≤) � ∃Q ⊂ P such that Q(Cl≤t ) = P (Cl≤t ) for all t ∈ T .
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Definition 4. (L�-reduct) A set P ⊆ C is called an L�-reduct if and only if

(L1�) P (Cl≥t ) = C(Cl≥t ), P (Cl≤t ) = C(Cl≤t ) for all t ∈ T , and
(L2�) � ∃Q ⊂ P such that Q(Cl≥t ) = P (Cl≥t ), Q(Cl≤t ) = P (Cl≤t ) for all t ∈ T .

As shown in Inuiguchi and Yoshioka [5], we have

If P is an L�-reduct then P satisfies (L1≥) and (L1≤).

3 Class-Based Reducts in DRSA

3.1 Approximations of Decision Classes

In this section, we propose a few new concepts of reducts, called class-based
reducts. Before giving the definitions, we need to define lower and upper approx-
imations and boundary regions of decision classes. For P ⊆ C and t ∈ T , lower
and upper approximations of Clt and the boundary region of Clt are defined by

P (Clt) = P (Cl≥t ) ∩ P (Cl≤t ), (23)

P (Clt) = P (Cl≥t ) ∩ P (Cl≤t ), (24)
BnP (Clt) = P (Clt) − P (Clt). (25)

The properties of those approximations are given in the following theorem.

Theorem 1. For P ⊆ C and t ∈ T , we have

P (Clt) = {x ∈ U | lP (x) = uP (x) = t}, (26)
P (Clt) = {x ∈ U | lP (x) ≤ t ≤ uP (x)}, (27)
BnP (Clt) = {x ∈ U | lP (x) ≤ t ≤ uP (x), lP (x) < uP (x)}, (28)

P (Cl≥t ) =
⋃

k≥t,k∈T

P (Clk), P (Cl≤t ) =
⋃

k≤t,k∈T

P (Clk), (29)

P (Clt) ⊆ Clt ⊆ P (Clt), (30)
P (Clt) = BnP (Clt) ∪ Clt, (31)
P (Clt) = Clt − BnP (Clt), (32)

P (Clt) = U −
⋃

k �=t,k∈T

P (Clk), (33)

U −
⋃
k∈T

P (Clk) =
⋃
k∈T

BnP (Clk), (34)

BnP (Clt) = BnP (Cl≥t ) ∪ BnP (Cl≤t ), (35)

BnP (Clt) = P (Clt) ∩
⋃

k �=t,k∈T

P (Clk). (36)

Proof. We prove (26), (29), (33), (34) , (35) and (36) only. The others can be
shown in the similar manner or straightforwardly.
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First we prove (26). Suppose x ∈ {x ∈ U | lP (x) = uP (x) = t}. By the
definition of lP (x), lP (x) = t implies D+

P (x) ∩ Cl≤t−1 = ∅. Since Cl≥t = U −
Cl≤t−1, we have D+

P (x) ⊆ Cl≥t . Then x ∈ P (Cl≥t ). In the same way, we obtain
uP (x) = t implies x ∈ P (Cl≤t ). Therefore, x ∈ P (Clt). On the other hand,
suppose x ∈ P (Clt). Then we have D+

P (x) ⊆ Cl≥t and D−
P (x) ⊆ Cl≤t . Because

x ∈ D+
P (x) and x ∈ D−

P (x), we obtain x ∈ D+
P (x) ∩ D−

P (x) ⊆ Cl≥t ∩ Cl≤t = Clt.
Moreover, D+

P (x) ⊆ Cl≥t is equivalent to D+
P (x) ∩ Cl≤t−1 = ∅. Combining this

with x ∈ D+
P (x) and x ∈ Clt, we obtain l(x) = t. Similarly, from D−

P (x) ⊆ Cl≤t ,
we obtain u(x) = t. Therefore, x ∈ {x ∈ U | lP (x) = uP (x) = t}.

We prove the second part of (29) by induction. When t = 1, P (Cl≤1 ) = P (Cl1)
holds. Suppose P (Cl≤s ) =

⋃
k≤s,k∈T P (Clk) holds when t = s < n, then

⋃
k≤s+1

P (Clk) = P (Cl≤s ) ∪ P (Cls+1) = P (Cl≤s ) ∪ (P (Cl≥s+1) ∩ P (Cl≤s+1))

= (P (Cl≤s ) ∪ P (Cl≥s+1)) ∩ (P (Cl≤s ) ∪ P (Cl≤s+1)).

By (9) and (14),
⋃

k≤s+1 P (Clk) = P (Cl≤s+1) holds. Therefore, we have proved
the second part of (29). The first part can be shown in the same way.

We prove (33). Applying De Morgan’s law and (29) to the definition, we obtain
P (Clt) = P (Cl≤t ) ∩ P (Cl≥t ) = U − P (Cl≥t+1) ∪ P (Cl≤t−1) = U −

⋃
k �=t P (Clk).

We prove (34). Applying (9), De Morgan’s law, we obtain

U −
⋃
k∈T

P (Clk) =
⋃
k∈T

P (Clk) −
⋃
k∈T

P (Clk)

=
⋃
k∈T

P (Clk) ∩
⋂
k∈T

(U − P (Clk)) =
⋃
k∈T

(P (Clk) ∩
⋂
l∈T

(U − P (Cll))).

By (33), we obtain P (Clk) ⊆ U−P (Cll) for l �= k. Therefore, U−
⋃

k∈T P (Clk) =⋃
k∈T (P (Clk) ∩ (U − P (Clk))) =

⋃
k∈T (P (Clk) − P (Clk)) =

⋃
k∈T BnP (Clk).

We prove (35). By (20) and (21), BnP (Cl≥t ) = {x ∈ U | lp(x) < t ≤ uP (x)}
and BnP (Cl≤t ) = {x ∈ U | lp(x) ≤ t < uP (x)}. Then, from (28), BnP (Cl≥t ) ∪
BnP (Cl≤t ) = {x ∈ U | lp(x) ≤ t ≤ uP (x), lp(x) < uP (x)} = BnP (Clt).

Finally, we prove (36). By (33), BnP (Clt) = P (Clt) − P (Clt) = P (Clt) −
(U −

⋃
k �=t,k∈T P (Clk)) = P (Clt) ∩

⋃
k �=t,k∈T P (Clk). ��

Moreover, the approximations are also monotone with respect to the inclusion
relation between condition attribute sets. Let P, Q ⊆ C and t ∈ T , we have

Q ⊆ P ⇒ Q(Clt) ⊆ P (Clt), Q(Clt) ⊇ P (Clt). (37)

3.2 Class-Based Reducts

Now, we are ready to define new kinds of reducts. The first kind of reducts, called
L-reduct, preserves the lower approximations of decision classes, the second kind
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reduct, called U-reduct, preserves the upper approximations of decision classes,
and the third kind of reduct, called B-reduct, preserves the boundary regions of
decision classes. They are defined formally as follows.

Definition 5. (L-reduct) A set P ⊆ C is called an L-reduct if and only if

(L1) P (Clt) = C(Clt) for all t ∈ T , and
(L2) � ∃Q ⊂ P such that Q(Clt) = P (Clt) for all t ∈ T .

Definition 6. (U-reduct) A set P ⊆ C is called a U-reduct if and only if

(U1) P (Clt) = C(Clt) for all t ∈ T , and
(U2) � ∃Q ⊂ P such that Q(Clt) = P (Clt) for all t ∈ T .

Definition 7. (B-reduct) A set P ⊆ C is called a B-reduct if and only if

(B1) BnP (Clt) = BnC(Clt) for all t ∈ T , and
(B2) � ∃Q ⊂ P such that BnQ(Clt) = BnP (Clt) for all t ∈ T .

Those concepts are parallel to L-, U- and B-reducts [4] discussed in the setting
of the classical rough sets.

From the properties of approximations, we have the following theorem which
is proved easily.

Theorem 2. We have the following assertions:

(a) If P is a U-reduct then P satisfies (L1).
(b) P is a U-reduct if and only if P is a B-reduct.

Consequently, we have only two kinds of class-based reducts: L-reduct and U-
reduct (or B-reduct). This result is parallel to the result in the classical rough
sets [4].

Let us discuss relations of the proposed class-based reducts and the previous
reducts introduced in Section 2.4. We have the following theorems.

Theorem 3. P is an L-reduct if and only if P is a Q-reduct.

Proof. By (10) and (35), we have BnP (Clt) = BnP (Cl≤t−1) ∪ BnP (Cl≤t ). It
implies

⋃
t∈T BnP (Clt) =

⋃
t∈T BnP (Cl≤t ). From (34), the union of the lower

approximations
⋃

t∈T P (Clt) equals to the quality of sorting γP (C). So it suffices
to show

∣∣⋃
t∈T P (Clt)

∣∣ = ∣∣⋃t∈T C(Clt)
∣∣ if and only if ∀t ∈ T, P (Clt) = C(Clt).

From (30), Q(Clt) and Q(Cls) are disjoint for any t, s ∈ T such that t �= s and for
any Q ⊆ C. Then, we have

∣∣⋃
t∈T Q(Clt)

∣∣ =∑t∈T |Q(Clt)| for Q = P, C. From
this and (37),

∣∣⋃
t∈T P (Clt)

∣∣ = ∣∣⋃t∈T C(Clt)
∣∣ if and only if ∀t ∈ T, |P (Clt)| =

|C(Clt)| which is equivalent to ∀t ∈ T, P (Clt) = C(Clt). ��

Theorem 4. P is a U-reduct if and only if P is an L�-reduct.

Proof. This is easily obtained from (8), (24) and (29). ��

As a result, all kinds of reducts proposed in DRSA are arranged in Figure 1.
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Fig. 1. Relations of reducts in DRSA

4 A Unified Approach to Discernibility Matrices

4.1 Reducts Based on Generalized Decisions

A discernibility matrix is a popular approach to enumeration of all reducts in
the rough set approach. For L≥-, L≤- and L�-reducts, suitable discernibility
matrices have successfully proposed in [5,9]. For Q-reduct, a similar approach to
a discernibility matrix has been proposed in [8]. Therefore, all reducts in DRSA
can be enumerated by those previous approaches.

In this section, we propose alternative discernibility matrices for enumera-
tions of all reducts. In the proposed approach, calculations of lower and up-
per approximations of all downward and upward unions are not required but
those of generalized decisions of all objects. The latter would require less com-
putation effort than the former. Moreover, we can treat all kinds of reducts
∀y ∈ U, (lC(y) > lC(x) implies ∃q ∈ P, x ��q y) comprehensively in the proposed
approach.

We introduce some kinds of reducts based on generalized decisions.

Definition 8. (δ-reduct) A set P ⊆ C is called a δ-reduct if and only if

(δ1) ∀x ∈ U, δP (x) = δC(x) and
(δ2) � ∃Q ⊂ P such that ∀x ∈ U, δQ(x) = δP (x).

Definition 9. (Lδ-reduct) A set P ⊆ C is called an Lδ-reduct if and only if

(Lδ1) ∀x ∈ U , lC(x) = uC(x) implies δP (x) = δC(x) and
(Lδ2) � ∃Q ⊂ P such that ∀x ∈ U , lC(x) = uC(x) implies δQ(x) = δP (x).

Definition 10. (l-reduct) A set P ⊆ C is called an l-reduct if and only if

(l1) ∀x ∈ U , lP (x) = lC(x) and
(l2) � ∃Q ⊂ P such that ∀x ∈ U , lQ(x) = lP (x).

Definition 11. (u-reduct) A set P ⊆ C is called a u-reduct if and only if

(u1) ∀x ∈ U , uP (x) = uC(x) and
(u2) � ∃Q ⊂ P such that ∀x ∈ U , uQ(x) = uP (x).

We obtain the following theorem.
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Theorem 5. We have the following assertions:

(a) P is a δ-reduct if and only if P is a U-reduct, i.e., an L�-reduct.
(b) P is an Lδ-reduct if and only if P is an L-reduct, i.e., a Q-reduct.
(c) P is an l-reduct if and only if P is an L≥-reduct.
(d) P is a u-reduct if and only if P is an L≤-reduct.

Proof. We prove only (b) since (a), (c) and (d) can be shown easily from (20).
It suffices to prove that (Lδ1) is equivalent to (L1). From (26), (Lδ1) if and only
if ∀t ∈ T, C(Clt) ⊆ P (Clt)) which is (L1). ��

4.2 Discernibility Matrices

We first give an underlying theorem to define discernibility matrices.

Theorem 6. Let x ∈ U , then we have the following equivalences:

lP (x) = lC(x)
if and only if ∀y ∈ U, (lC(y) < lC(x) implies ∃q ∈ P, y ��q x), (38)

uP (x) = uC(x)
if and only if ∀y ∈ U, (uC(y) > uC(x) implies ∃q ∈ P, y �
q x). (39)

Proof. We prove only (38). The other can be shown in the same way.
First, under the supposition ∀y ∈ U, (lC(y) < lC(x) implies ∃q ∈ P, y ��q x),

we prove lC(x) ≤ lP (x) by contradiction. Assume lC(x) > lP (x), then there
exists y ∈ D+

P (x) ∩ CllP (x). The fact y ∈ CllP (x) and the reflexivity of �P

(y ∈ D+
P (y)) implies lC(y) ≤ lP (x). From this and the assumption lC(x) >

lP (x) we have lC(y) < lC(x). On the other hand, y ∈ D+
P (x) i.e., y �P x, i.e.,

∀q ∈ P, y �q x. Facts lC(y) < lC(x) and y �P x contradict the supposition.
Consequently, we have lC(x) ≤ lP (x). Moreover, from (19), lP (x) ≤ lC(x) is
equivalent to lC(x) = lP (x).

Next we prove the converse. Suppose lP (x) = lC(x). Assume there exists
y ∈ U such that lC(y) < lC(x) and y �P x. y �P x implies D+

P (y) ⊆ D+
P (x).

By definition, this further implies lP (y) ≥ lP (x). Then, under the assumption,
we have lC(y) < lC(x) = lP (x) ≤ lP (y). This contradicts (19). Then we have
lC(y) < lC(x) implies ∃q ∈ P, y ��qx for all y ∈ U . ��
Now we are ready to define discernibility matrices. The l-discernibility matrix
M l and u-discernibility matrix Mu are defined as follows.
Definition 12. The l-discernibility matrix M l = (ml

ij)i,j=1,...,|U| is composed
of (i, j)-components ml

ij defined by

ml
ij =
{

{q ∈ C | xi ��q xj} if lC(xi) < lC(xj)
C otherwise (40)

On the other hand, the u-discernibility matrix Mu = (mu
ij)i,j=1,...,|U| is composed

of (i, j)-components mu
ij defined by

mu
ij =
{

{q ∈ C | xi �
q xj} if uC(xi) > uC(xj)
C otherwise (41)
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Let q̃P
i be a Boolean variable corresponding to a condition attribute qi and a

condition attribute set P defined by

q̃P
i =
{

true if qi ∈ P,
false otherwise. (42)

Then, based on M l and Mu, we consider the following Boolean functions F≥,
F≤, FU and FL:

F≥(q̃P
1 , ..., q̃P

|C|) =
∧

1≤i,j≤|U|

∨
q∈ml

ij

q̃P , (43)

F≤(q̃P
1 , ..., q̃P

|C|) =
∧

1≤i,j≤|U|

∨
q∈mu

ij

q̃P , (44)

FU(q̃P
1 , ..., q̃P

|C|) =
∧

1≤i,j≤|U|

∨
q∈ml

ij

q̃P ∧
∧

1≤i,j≤|U|

∨
q∈mu

ij

q̃P , (45)

FL(q̃P
1 , ..., q̃P

|C|)

=
∧

1≤i≤|U|

∧
j:lP (xj)=uP (xj)

∨
q∈ml

ij

q̃P ∧
∧

1≤i≤|U|

∧
j:lP (xj)=uP (xj)

∨
q∈mu

ij

q̃P . (46)

Based on Theorem 6, we have the following theorem.

Theorem 7. We have the following equivalences:

P ⊆ C satisfies (L1≥), i.e., (l1) if and only if F≥(q̃P
1 , ..., q̃P

|C|) = true, (47)

P ⊆ C satisfies (L1≤), i.e., (u1) if and only if F≤(q̃P
1 , ..., q̃P

|C|) = true, (48)

P ⊆ C satisfies (U1), i.e., (Lδ1) if and only if FU(q̃P
1 , ..., q̃P

|C|) = true, (49)

P ⊆ C satisfies (L1), i.e., (δ1) if and only if FL(q̃P
1 , ..., q̃P

|C|) = true. (50)

Proof. First three equivalences are obvious from Theorem 6 and definitions of
Boolean functions. The last one needs to show that any object x such that
lC(x) < uC(x) never satisfies lP (x) = uP (x). This is clear from (19). ��

From Theorem 7, all L≥-, L≤-, U- and L-reducts can be obtained as all prime
implicants of Boolean functions F≥, F≤, FU and FL, respectively.

The proposed discernibility matrices have two advantages comparing to the
previous ones. One is the computational efficiency. We need to calculate neither
lower approximations, upper approximations nor boundary regions but only the
lower bounds lC(x) and the upper bounds uC(x). The computational complexity
for the former is at least n times of that of the latter, when we do not apply (20)
and (21). The other advantage is that the all Boolean functions with respect
to L≥-reduct, L≤-reduct, U-reduct and L-reduct are obtained from only two
discernibility matrices.



Reducts in Dominance-Based Rough Set Approach 177

Table 1. A decision table

Student Mathematics Physics Literature Evaluation lC uC

S1 good good good good good good
S2 good good medium medium medium good
S3 medium good medium good medium good
S4 bad medium good medium medium medium
S5 medium bad medium bad bad medium
S6 medium bad bad medium bad medium
S7 bad bad bad bad bad bad

Table 2. The discernibility matrix M l with respect to Table 1

S∗
1 S2 S3 S∗

4 S5 S6 S∗
7

S1 C C C C C C C
S2 {q3} C C C C C C
S3 {q1, q3} C C C C C C
S4 {q1, q2} C C C C C C
S5 C {q1, q2} {q2} {q2, q3} C C C
S6 C C {q2, q3} {q2, q3} C C C
S7 C C C {q2, q3} C C C

Table 3. The discernibility matrix Mu with respect to Table 1

S∗
1 S2 S3 S∗

4 S5 S6 S∗
7

S1 C C C {q1, q2} C C C
S2 C C C {q1, q2} {q1, q2} C C
S3 C C C {q1, q2} {q2} {q2, q3} C
S4 C C C C C C {q2, q3}
S5 C C C C C C {q1, q3}
S6 C C C C C C {q1}
S7 C C C C C C C

Example 1. Consider a decision table given in Table 1. This table shows student
evaluation in a school. Objects are seven students, i.e., U = {S1, S2, . . . , S7}.
Condition attributes are scores of mathematics (q1), physics (q2) and literature
(q3), while decision attribute (d) is a comprehensive evaluation. Namely, C =
{q1, q2, q3}. We may assume that the better scores in all subjects student takes,
the better comprehensive evaluation he/she gets. The lower bounds lC and the
upper bounds uC are shown in the rightmost two columns of Table 1.

Discernibility matrices M l and Mu are obtained as in Table 2 and 3, re-
spectively. The columns with asterisk shows objects belonging to one of lower
approximations of decision classes. Then Boolean functions F≥, F≤, FU and FL

are obtained as

F≥(q̃1, q̃2, q̃3) = q̃2 ∧ q̃3 ∧ (q̃1 ∨ q̃2) ∧ (q̃1 ∨ q̃3) ∧ (q̃2 ∨ q̃3) = q̃2 ∧ q̃3. (51)
F≤(q̃1, q̃2, q̃3) = q̃1 ∧ q̃2 ∧ (q̃1 ∨ q̃2) ∧ (q̃1 ∨ q̃3) ∧ (q̃2 ∨ q̃3) = q̃1 ∧ q̃2, (52)
FU(q̃1, q̃2, q̃3) = F≥(q̃1, q̃2, q̃3) ∧ F≤(q̃1, q̃2, q̃3) = q̃1 ∧ q̃2 ∧ q̃3 (53)
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FL(q̃1, q̃2, q̃3) = (q̃3 ∧ (q̃1 ∨ q̃2) ∧ (q̃1 ∨ q̃3) ∧ (q̃2 ∨ q̃3))
∧(q̃1 ∧ (q̃1 ∨ q̃2) ∧ (q̃1 ∨ q̃3) ∧ (q̃2 ∨ q̃3)) = q̃1 ∧ q̃3 (54)

Consequently, we obtain {q2, q3} as a unique L≥-reduct, {q1, q2} as a unique
L≤-reduct, C = {q1, q2, q3} as a unique U-reduct and {q1, q3} as a unique L-
reduct. As exemplified in this example, L≥-reduct, L≤-reduct, U-reduct and
L-reduct can be different.

5 Conclusions

In this paper, we have investigated attribute reduction in DRSA. We intro-
duce class-based reducts and show relations with previous reducts. Moreover,
we show that all kinds of reducts can be enumerated comprehensively based on
two discernibility matrices associated with generalized decisions. The proposed
approach to the enumeration of all reducts can be computationally efficient.

The investigations about the class-based reducts in VC-DRSA as well as VP-
DRSA will be a next step of this research.
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8. Susmaga, R., S�lowiński, R., Greco, S., Matarazzo, B.: Generation of reducts and
rules in multi-attribute and multi-criteria classification. Control and Cybernet-
ics 29(4), 969–988 (2000)

9. Yang, X., Yang, J., Wu, C., Yu, D.: Dominance-based rough set approach and
knowledge reductions in incomplete ordered information system. Information Sci-
ences 178(4), 1219–1234 (2008)



Graph-Based Active Learning Based on Label

Propagation

Jun Long, Jianping Yin, Wentao Zhao, and En Zhu

National University of Defense Technology, Changsha, Hunan 410073, China
jdragon nudt@hotmail.com

Abstract. By only selecting the most informative instances for label-
ing, active learning could reduce the labeling cost when labeled instances
are hard to obtain. Facing the same situation, semi-supervised learning
utilize unlabeled instances to strengthen classifiers trained on labeled
instances under suitable assumptions. However, the current active learn-
ing methods often ignore such effect. Combining semi-supervised learn-
ing, we propose a graph-based active learning method, which can also
handle multi-class problems, in the entropy reduction framework. The
proposed method trains the base classifier using a popular graph-based
semi-supervised label propagation method and samples the instance with
the largest expected entropy reduction for labeling. The experiments
show that the proposed method outperforms the traditional sampling
methods on selected datasets.

Keywords: active learning, semi-supervised learning, label propagation.

1 Introduction

In passive learning problems, a previously labeled set of instances is available
for training. However, the process of labeling instances may be expensive or
time-consuming in many real world applications. For example, in gene expres-
sion analysis, labeling data may require very expensive tests therefore only a
small set of labeled data may be available. To reduce the labeling cost in learn-
ing problems, active learning methods, which only sample the most informative
instances for labeling, were proposed.

According to the source of unlabeled instances, active learning methods can
be divided into two types: pool-based and stream-based. In this paper, we focus
on pool-based active learning in which the active learner can go through the
entire set of unlabeled instances and select the most informative one or ones for
labeling. In general, a pool-based active learning method comprises two parts:
a learning engine and a sampling engine [1]. The typical process of pool-based
active learning methods can be described as follows. Initially, a small training set
of labeled instances and an unlabeled set are available. Then, the learning engine
trains a base classifier on the original training set. After that, the sampling engine
chooses the most informative instance x from the unlabeled instances and then
labels x by human experts before < x, c(x) > is added into the labeled set where

V. Torra and Y. Narukawa (Eds.): MDAI 2008, LNAI 5285, pp. 179–190, 2008.
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c(x) is the label of x. Then the learning engine constructs a new classifier on
the updated labeled set. The whole process runs repeatedly until the evaluation
index of the classifier or iteration times reaches the preset value.

Sampling criterion is the key problem in active learning. Depending on the
criterion used to select instances for labeling, the current research falls under sev-
eral categories: uncertainty reduction, expected-error minimization and version
space reduction [2]. The uncertainty reduction approach [3] selects the instances
on which the current base classifier has the least certainty. Many sampling meth-
ods apply the similar strategy [4,5]. They perform better than random sampling
in most tasks, but sometimes they may select outliers. The expected-error min-
imization approach [6,7,8] samples the instances that minimize the future ex-
pected error rate on the test set. Such methods expect to achieve the lowest
error, but they are computationally expensive and the performance heavily de-
pends on the chosen lost function. The version space reduction approach [9,10]
tries to select the instances that can reduce the volume of the version space by
half. Query-by-Committee is a representative method of this approach that con-
structs a committee consisting of randomly selected hypotheses from the version
space and selects the instances on which the disagreement within the committee
is the greatest. The version space reduction approach also includes QBag [11],
QBoost [11], Active DECORATE [12] and CBMPMS [13].

Most active learning methods sample instances just based on the models built
on labeled instances and totally ignore the effect of unlabeled instances. However,
unlabeled instances could strengthen supervised learning tasks under suitable
assumptions. A variety of semi-supervised learning methods were proposed based
on this idea.

Semi-supervised learning methods can be used to strengthen active learners.
Some researchers have made their contributions based on such idea. McCallum
and Nigam [14] presented an active learning method which constructed the base
classifier on labeled and unlabeled instances using the EM algorithm for text
categorization. It is efficient in text categorization, but only suitable for the gen-
erative model. Muslea [2] proposed the multi-view active learning method which
selected the instances with the largest disagreement from multi-view learners.
However, it requires the learning task to be a multi-view one. Zhu [8] presented a
method combining active learning and semi-supervised learning using Gaussian
Fields and Harmonic Functions. Belonging to the expected-error minimization
approach, it tends to achieve the lowest error. However, it can only handle 2-
class classification problems and its performance depends on the function used
to estimate the risk.

In recent years, graph-based methods is popular in semi-supervised learning
due to clear mathematical framework and strong performance with suitable mod-
els. However, few study concentrates on graph-based methods in active learning.
In this paper, we propose a graph-based active learning method called GAL,
which can also handle multi-class problems, in the entropy reduction frame-
work. The proposed method trains a classifier using a popular graph-based
semi-supervised label propagation method and samples the instance with the
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largest expected entropy reduction for labeling. The experiments show that the
proposed method obtains smaller data utilization and average deficiency than
other popular active learners on selected datasets from semi-supervised learning
benchmarks.

The rest of the paper is organized as follows. Section 2 provides the basic
notations and related work in semi-supervised learning. Section 3 presents the
entropy reduction framework for graph-based active learning. Section 4 describes
the proposed graph-based active learning called GAL in detail. Section 5 shows
the experimental results of the GAL method as well as other methods on selected
data sets. Section 6 draws the conclusion.

2 Preliminaries

2.1 Basic Notation

The instance space X is a nonempty set containing several instances. Each in-
stance xi is a feature vector < xi1, xi2, · · · , xim >. Let C = {y1, y2, · · · , yp} be
the set of possible labels.

The target function c to be learned is a function c : X → C that classifies
any x ∈ X as a member of C. C has p elements. The notion < x, c(x) > denotes
a labeled instance and < x, ? > denotes an unlabeled instance where ? ∈ C.
L denotes the whole set of labeled instances and U denotes the whole set of
unlabeled instances.

There are l labeled instances: < x1, y1 >, · · · , < xl, yl >, and u unlabeled
instances:< xl+1, ? >, · · · , < xl+u, ? >. We have l $ u. The total number of
instances is n = l + u.

Let G =< V, E > be a connected graph with vertices V and edges E. Each
vertex vi ∈ V represents an instance in L

⋃
U . Each edge < vj , vk >∈ E connects

two vertices vj and vk. We have the adjacency matrix Wnn of G and its entry
wij is the similarity between vi and vj . Here wij is given by Gaussian kernel of
width σ:

wij = e−
‖xi−xj‖2

2σ2 (1)

We choose a method proposed in [15] to learn the scale parameter σ.
Furthermore, we define a diagonal matrix D, in which Dii =

∑n
j=1 wij .

Let Ymp be a m × p matrix on G, and yik in Ymp is the probability for
instance xi to be labeled as y ∈ C. If xi is labeled as yk, then yik = 1. And if xi

is unlabeled, then yik = 1/p, k = 1, · · · , p.

2.2 Semi-supervised Learning

Similar to active learning, few labeled instances are available and a large num-
ber of unlabeled instances are provided in semi-supervised learning. Differently,
semi-supervised learning aims to build better classifiers using both labeled and
unlabeled instances and can not select instances for labeling.



182 J. Long et al.

Some assumptions should be satisfied for semi-supervised learning, including
[16]: (1)If two points x1, x2 are close, then so should be the corresponding out-
puts y1, y2. (2)If two points are in the same structure (a cluster or a manifold),
then they are likely to have the same labels. They can be called the cluster as-
sumptions, which make sense in many real world applications. Based on these
assumptions, labels of many unlabeled instances can be predicted by nearby
labeled instances with high certainty. Thus the label uncertainty on all the in-
stances can be significantly reduced.

Various semi-supervised learning methods were proposed according to dif-
ferent models for realizing the cluster assumptions[17]: co-training, generative
models, graph-based learning, semi-supervised vector machines and so on.

Graph-based semi-supervised learning methods are most popular in recent
years. In these methods, instances are represented as vertices in a weighted
graph, with edge weights encoding the similarity between instances. The clus-
ter assumptions can be implemented in an easy way in graph-based methods.
Typical graph-based semi-supervised learning methods include Mincuts [18], har-
monic functions [15], label propagation [19], and manifold regularization [20].

3 A Framework of Entropy Reduction for Graph-Based
Active Learning

Let H(xi) be the entropy of label probability distribution of instance xi. Then
let H(G) denote the sum of H(x) on all instances. Then

H(G) =
∑

xi∈L
�

U

p∑
k=1

(−yik log yik) (2)

Thus, H(G) reflects the certainty of the label probability distribution on
L
⋃

U . Smaller H(G) indicates more certain labels on G. If all instances are
labeled, H(G) equals to 0. Thus, minimizing H(G) can be viewed as the goal of
the learning tasks.

In active learning, when some instances are selected for labeling, H(x) of those
instances are changed from some positive value to 0. However, since obtaining
labels on instances requires heavy cost in active learning, we can not label all
the instances because of cost constraint.

When holding the clustering assumptions, the labels on labeled instances can
be used to predict those of neighboring instances. Thus, labels propagate from
labeled instances to unlabeled instances. Then, the uncertainty on labels de-
creases, so does H(G).

Therefore, label propagation can be used to strengthen active learning under
the clustering assumptions.

4 The Graph-Based Active Learning Method

Under the clustering assumptions, semi-supervised learning and active learning
can be combined to construct stronger active learners using unlabeled instances.
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We present a graph-based active learning method in which both learning engine
and sampling engine are modified to employ semi-supervised learning. In the
learning engine, a popular graph-based label propagation method is used to
generate the base classifier. And in the sampling engine, the sampling criterion
which tends to sample the instance with the largest expected entropy reduction
is proposed.

4.1 Learning Engine in GAL

To strengthen the learning engine with unlabeled instances, we choose a popular
graph-based label propagation method proposed by Zhou [16] to generate the
base classifier.

The label propagation method is introduced in Algorithm 1.

Algorithm 1. the label propagation method proposed by Zhou [16]
1.Construct the matrix Wij and Wii = 0;
2.Construct the matrix S = D−1/2WD−1/2 ;
3.Iterate F (t + 1) = αSF (t) + (1 − α)Y until convergence, where α is a parameter
in (0,1);
4.Let F ∗ denote the limit of the sequence F (t). Label each point xi as a label
yi = arg maxj≤c F ∗

ij .

F is a vectorial function F : X → C which assigns a vector Fi which denotes
the predicted class probability distribution on each instances xi. Zhou [16] proves
that the sequence {F (t)} converges to F ∗ = (1 − α)(I − αS)−1Y .

When a new instance x should be predicted by the label propagation method,
we simply use the following function to calculate the label of x [21]:

ŷ =

∑
j WX(x, xj)ŷj∑
j WX(x, xj)

(3)

where WX is the Gaussian kernel function:

WX(xi, xj) = e−
‖xi−xj‖2

2σ2 (4)

We take Eq.(3) as the base classifier in the GAL method.
The modified learning engine executes label propagation on unlabeled in-

stances in iterations. Thus more entropy will be reduced than the method em-
ployed by the traditional learning engines.

4.2 Sampling Engine in GAL

Since the learning engine is modified to utilize label propagation on unlabeled
instances, the sampling engine should be changed to cooperate with that.
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Let LP (G) be the label propagation operation on G. When LP (G) is exe-
cuted, we obtain the predicted class probability distribution F ∗ = (1 − α)(I −
αS)−1Y .

Let Label(G, v, y) be the operation which labels v in G as y ∈ C and outputs
the graph G with updated Y after v is labeled. When Label(G, vi, yj) is executed,
yij ∈ Ymp will become 1 and yik, (k �= j) will become 0.

Let IG(G, v, y) denote the reduced entropy when v was labeled as y after label
propagation. Then

IG(G, v, y) = H(LP (G)) − H(LP (Label(G, v, y)))) (5)

We sample the instances with the maximum expected entropy reduction.
Thus, the sampling criterion is

ESi =
∑
y∈C

p(y|xi)IG(G, vi, y) (6)

where p(y|xi) denotes the probability of xi being labeled as y. According to the
definition of Fi, p(y|xi) can be obtained from Fi. We sample the instances with
the largest ESi.

4.3 The Process of Graph-Based Active Learning

The process of GAL method is given in Algorithm 2.

Algorithm 2. the GAL method
Input: an initial labeled set L, an unlabeled set UL, a stopping criterion S, and an
integer M which specify the number of instances sampled in each iteration.
Begin:
Construct G, W , D, Y ;
repeat

1.For each instance xi ∈ UL compute

ESi =
�

y∈C

p(y|xi)Gain(G, vi, y) (7)

2.Select a subset A of size M from UL in which instances xi have the largest ESi;
3.Remove A from UL;
4.Label instances in A;
5.Add A into L;
6.Update Y ;
7.Recalculate F ∗ = (1 − α)(I − αS)−1Y ;

until the stopping criterion S is satisfied
End.
Output:The final F ∗.
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5 Experimental Results

5.1 Methodology

A series of experiments were conducted to evaluate the performance of our GAL
method. Four representative active learning algorithms were tested.

– Random sampling: choosing the instance at random;
– Uncertainty sampling: choosing the instance with the largest uncertainty of

prediction, as in [3];
– QBC sampling: choosing the instance that the committee members disagree

with most, as in [9];
– GAL sampling(the method introduced in this paper).

The methods proposed by McCallum [14], Muslea [2] and Zhu [8] are designed
for specific tasks, respectively. Thus we can not compare them in a general way.

Naive bayes was selected to be the base classifier of all other active learners. 10-
fold cross-validation was used to obtain the target accuracy of the base classifier.
The target accuracy is defined as the accuracy obtained by the base learning
method trained on the whole dataset. All results presented were averages of ten
runs. The committee size in QBC were set to 5. α was set to 0.1.

Each dataset was divided into 10 equal partitions at random and each in turn
is used for testing and the remainder was used as the sampling set. Before the
test started, the sampling set was divided into two parts: one is the labeled set
and another is the unlabeled set. The labeled set contains only one instance
selected randomly and the unlabeled set contains all the rest instances. When
the test started, the active learner sampled 1 instance from the unlabeled set for
labeling in each iteration. While the active learner reached the target accuracy,
the test stopped.

Four datasets were chosen as the benchmarks: g241c, handwritten digits, coil
and secstr1500. These datasets were from the benchmarks of Semi-supervised
learning [21]. The reason we selected these datasets for experiments is that
they can be easily obtained to compare different active learners and are widely
accepted as the benchmarks for semi-supervised learning.

Some information of these datasets were given as follows:

– g241c: was generated to hold the cluster assumption. All instances were
drawn from two unit-variance isotropic Gaussians. The label of an instance
represents the Gaussian it was drawn from.

– handwritten digits : designed to consist of points close to a low-dimensional
manifold embedded in a high-dimensional space. The instances originated
from the digit ’1’. Then several operations were taken on it, including trans-
lation, rotation and line thickness.

– coil : from the Columbia object image library, which consists images taken
from different directions. 24 objects were divided into 6 classes of 4 objects
each. There are 38 images in each class.
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– secstr1500 : used to predict the secondary structure of a given amino acid
in a protein based on a sequence window centered around that amino acid.
The dataset consisting of 83679 instances is presented to investigate how far
current methods can cope with large-scale application. It is too large for PC
to handle it, thus we choose a subset which includes 1500 instances from the
whole dataset.

Table 1 shows the basic properties of these datasets.

Table 1. Basic properties of the datasets

Data set Classes Dimension Instances Comment

g241c 2 241 1500 artificial
digit1 2 241 1500 artificial
coil 6 241 1500 natural
secstr1500 2 315 1500 natural

Two metrics were used to compare the performance of different active learners:
data utilization [12] and average deficiency [22].

Data utilization is defined as the number of sampling an active learner requires
to reach the target accuracy. This metric reflects how efficiently the active learner
can use the data. Smaller values of data utilization indicate more efficient active
learning. Moreover, it is employed by many other researchers [12,11].

Average deficiency is used to evaluate how much an active learner could im-
prove accuracy over random sampling. It is defined as:

Defn(Active) =
∑n

t=1(Accn(Ran) − Acct(Acv))∑n
t=1(Accn(Ran) − Acct(Ran))

(8)

where n denotes the size of the whole unlabeled set, Acv denotes the active
learner we want to evaluate, Ran denotes the random sampling method, and
Acct(Acv) denotes the average accuracy achieved by Acv after t sampling. Fur-
thermore, the value of Defn(Acv) is always non-negative and smaller values in
[0, 1) indicate more efficient active learning [22].

5.2 Results

The data utilization and the deficiency of the different active learners were sum-
marized in Table 2 and Table 3, respectively. In the head of Table 2 , TA denotes
target accuracy.

According to Table 2 and Table 3, it shows that our GAL method has a
superior performance than other sampling methods on most datasets.
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Table 2. Average data utilization of the different active learners

Data set Random Uncertain QBC GAL TA

g241c 291 268 349 208 81.23%
digit1 74 55 110 40 95.56%
coil 288 351 172 144 64.42%
secstr1500 543 511 488 358 64.87%

Table 3. Average deficiency of the different active learners

Data set Uncertain QBC GAL

g241c 0.7525 0.6096 0.5023
digit1 0.2436 0.1873 0.1033
coil 0.6690 0.5979 0.4587
secstr1500 0.7150 1.1634 0.5209
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Figure 1-4 show the learning curves on the g241c, digit1, coil and secstr1500.
In all these figures, the vertical axis shows the accuracy of the classifier and the
horizontal axis shows the number of labels.

In Figure 1, all the learning curves climb substantially. The learning curve of
the GAL method starts with a sharp rise and finally reaches the highest point. In
Figure 2, 3 and 4, our GAL method almost outperforms the other active learners
throughout the whole learning curve.

We obtain two observations in the experiments. First, our GAL method
achieves significantly higher accuracy than other methods at the beginning of
all tests. This indicates that the GAL method tends to sample more informative
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instances than other active learning methods. Second, we find that all the learn-
ing curves fluctuate during the whole cures in Figure 4. The dataset secstr1500
is too sparse to obtain stable results. To the best of our knowledge, the current
graph-based learning methods can not handle the whole dataset of secstr with
83679 instances efficiently. We will investigate it in our ongoing work.

6 Conclusions

In this paper, we use graph-based semi-supervised learning, which employs un-
labeled instances when training, to strengthen active learning. A graph-based
active learning method in an entropy reduction framework is presented. The
proposed method trains a classifier using a popular graph-based semi-supervised
label propagation method in the learning engine and samples the instance with
the largest expected entropy reduction in the sampling engine. The experiments
show that the proposed method outperforms the traditional sampling methods
on selected datasets.

We make several contributions in this paper. First, an graph-based entropy
reduction framework for active learning was proposed. Second, the method in
which both the learning engine and the sampling engine are modified to uti-
lize the unlabeled instances for active learning was presented. Third, the pro-
posed graph-based active learning method can also handle multi-class learning
problems.

We would like to pursue the following directions: extending the proposed
method to more complex data problem and developing efficient algorithms for
active learning on manifold structure.

Acknowledgments. This research was supported by the National Natural Sci-
ence Foundation of China (No.60603015, 60603062).
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Abstract. This paper discusses the dual of infinite-variable quadratic
minimization (primal) problems from a view point of Golden ratio. We
consider two pairs of primal and dual (maximization) problems. One
pair yields the Golden complementary duality: (i) Both the minimum
value function and the maximum value function are the identical Golden
quadratic. (ii) Both the minimum point and the maximum point consti-
tute the Golden paths. (iii) The alternate sequence of both the Golden
paths constitutes another Golden path. The other yields the inverse-
Golden complementary duality: (i)′ Both the minimum value function
and the maximum value function are the identical inverse-Golden quad-
ratic, (ii) and (iii).

1 Introduction

The golden section is a line segment divided into two according to the golden
ratio. It is a proportion which is considered to be particularly pleasing to the
eye.

The Golden ratio is one of the most beautiful numbers. The desire for optimal-
ity is inherent for humans. One minimization leads to the other maximization,
which arrives at a duality. We direct our attention to both the Golden ratio and
the duality. A duality of fine features is shown.

In this paper, we are concerned with dynamic optimization problems of infi-
nitely many variables from a viewpoint of Golden duality [7,8,10]. We take two
typical quadratic minimization (primal) problems with initial condition and asso-
ciate each problem with a quadratic maximization (dual) problem with transver-
sality condition. The two pairs of primal and dual problems have an interesting
feature. As for the first pair, the minimum value function is Golden quadratic
and the minimum point constitutes a Golden path, while so is the maximum
value function and the maximum point does such another. As for the second,
the minimum value function is inverse-Golden quadratic and the minimum point
constitutes the same Golden path, while so is the maximum value function and
the maximum point does the same such another.

V. Torra and Y. Narukawa (Eds.): MDAI 2008, LNAI 5285, pp. 191–202, 2008.
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2 Duality

A real number

φ =
1 +

√
5

2
≈ 1.618

is called Golden number [1,2,14]. It is the larger of the two solutions to quadratic
equation (QE)

x2 − x − 1 = 0. (1)

Sometimes QE (1) is called Fibonacci or Golden. The Golden QE has two real
solutions: φ and its conjugate φ := 1 − φ. We note that

φ + φ = 1, φ ·φ = −1.

Further we have

φ−1 = φ − 1, (φ)−1 = −φ, φ−1 + (φ)−1 = −1, φ−1 ·(φ)−1 = −1,

φ2 = 1 + φ, φ
2

= 2 − φ, φ2 + φ
2

= 3, φ2 ·φ2
= 1.

A linear function u(x) = ax is called Goldenn if a = φn, where n = 1,−1, 2,−2, . . .
A quadratic function v(x) = ax2 is also called Goldenn if a = φn. In either,
Golden1 is simply called Golden. Golden−1 is also called inverse-Golden [9]. In
this section, we consider two pairs of primal and dual problems. One pair yields
a duality for the Golden quadratic function. The other pair yields a duality for
the inverse-Golden quadratic function.

2.1 Golden Duality

We take an interval [0, x], where x > 0. Let us consider the set of all divisions of
the interval [0, x]. Each division is specified by an inner point y ∈ [0, x], which
splits the interval [0, x] into two intervals [0, y] and [y, x]. A point (2−φ)x splits
the interval into two intervals [0, (2 − φ)x] and [(2 − φ)x, x]. A point (φ − 1)x
splits it into [0, (φ − 1)x] and [(φ − 1)x, x]. In either case, the length constitutes
the Golden ratio (2 − φ) : (φ − 1) = 1 : φ. Thus both divisions are the Golden
section [1,2,14].

Definition 1. [11] A sequence x : {0, 1, . . .} → R1 is called Golden if and only
if either

xt+1

xt
= φ − 1 or

xt+1

xt
= 2 − φ.

Lemma 1. [11] A Golden sequence x is either

xt = x0(φ − 1)t or xt = x0(2 − φ)t.

We remark that

(φ − 1)t = φ−t, (2 − φ)t = (1 + φ)−t
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where
φ − 1 = φ−1

≈ 0.618, 2 − φ = (1 + φ)−1
≈ 0.382

Let R∞ be the set of all sequences of real values :

R∞ = {x = (x0, x1, . . . , xn, . . .) |xn ∈ R1 n = 0, 1, . . .}.

We consider a primal problem on R∞ 1 :

minimize
∞∑

n=0

[
x2

n + (xn − xn+1)2
]

(P1)
subject to (i) x ∈ R∞ (ii) x0 = c

where c ∈ R1.
A dual problem is a maximization problem of µ = (µ0, µ1, . . . , µn, . . .) ∈ R∞:

Maximize c2 + 2cµ0 −
∞∑

n=0

[
µ2

n + (µn − µn+1)
2
]

(D1)
subject to (i) µ ∈ R∞ (ii) lim

n→∞µn = 0.

We note that both problems contain a common series
∞∑

n=0

[
y2

n + (yn − yn+1)2
]
.

In either problem, we are concerned with the finite convergence case :
∞∑

n=0

[
y2

n + (yn − yn+1)2
]

< ∞. This implies that lim
n→∞ yn = 0. In Section 3, we

will see that the additional transversality condition (ii) enables us to make dual of
(P1) without difficulty. Therefore, the transversality condition may be removed
from the constraints.

Theorem 1. (Golden duality) (i) The primal problem (P1) has the minimum
value m = φc2 at the point

x̂ = c (1, (2 − φ), . . . , (2 − φ)n, . . .) .

(ii) The dual problem (D1) has the maximum value M = φc2 at the point

µ∗ = φ−1c (1, (2 − φ), . . . , (2 − φ)n, . . .) .

We make an observation about the two optimal solutions. First, both the min-
imum value function and the maximum value function are the identical Golden
quadratic value function (Golden dual).

m = M = φc2.

1 As for corresponding finite variable problems see [6], and as for their dual and others
see [3,4,5,6,12].
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Second, both the minimum point and the maximum point constitute one Golden
path (Golden).

x̂ = (x0, x̂1, x̂2, . . . , x̂n, . . .)

= (c, c(2 − φ), c(2 − φ)2, . . . , c(2 − φ)n, . . .)

µ∗ = (µ∗
0, µ∗

1, µ∗
2, . . . , µ∗

n, . . .)

= (cφ−1, cφ−1(2 − φ), cφ−1(2 − φ)2, . . . , cφ−1(2 − φ)n, . . .).

Third, the alternate sequence of both the Golden paths y̆ constitutes another
Golden path (Golden complement).

y̆ := (x0, µ∗
0, x̂1, µ∗

1, x̂2, µ∗
2, . . . , x̂n, µ∗

n, . . .)

= (c, cφ−1, c(2 − φ), cφ−1(2 − φ), . . . , c(2 − φ)n, cφ−1(2 − φ)n, . . .)

= (c, c(φ − 1), c(φ − 1)2, c(φ − 1)3, . . . , c(φ − 1)2n, c(φ − 1)2n+1, . . .).

How beautiful this duality is!

Thus, the duality is called Golden complementary duality. A proof of Theorem
1 will be given throughout the discussion in Section 3.

O

y̆

t
+ + + + + + +

+

+

+

21 3 4 5

1

2

3
x0

x̂1

0

1

x̂2
2 x̂3

Fig. 1. Golden paths y̆ = c(φ − 1)t c = 1, 2, 3
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We see that the minimum solution of (P1) yields the maximum solution of
(D1). Let (P1) have the minimum value m = φc2 at the minimum point x̂. Then
we have

Max

[
c2 + 2cµ0 −

∞∑
n=0

[
µ2

n + (µn − µn+1)
2
]]

= Max
µ0

[
c2 + 2cµ0 − min

{µn}n≥1

∞∑
n=0

[
µ2

n + (µn − µn+1)
2
]]

= Max
µ0

[
c2 + 2cµ0 − φµ2

0

]
= φc2 for µ0 = φ−1c

where the minimum is attained at

(µ̂1, µ̂2, . . . , µ̂n, . . .) = µ0

(
2 − φ, (2 − φ)2, . . . , (2 − φ)n, . . .

)
.

Theorem 2. (Double-Golden Solution 1): (φ � φ−1) The functional equation

f(c) = Max
µ∈R1

[
c2 + 2cµ − f(µ)

]
c ∈ R1

has a maximum value function f(c) = φc2 for maximum point function µ̂(c) =
φ−1c.

We observe that f is Golden (and) quadratic and µ̂ is inverse-Golden (and)
linear. This is the first double-Golden solution.

Proof. It is easily verified that f with µ̂ satisfies the functional equation (see
also [15]). ��
Corollary 1. (Double-Golden Solution 2): (φ � φ) The functional equation

f(c) = Max
µ∈R1

[
2cµ + µ2 − f(µ)

]
c ∈ R1

has a maximum value function f(c) = φc2 for maximum point function µ̆(c) =
φc.

We observe that f is Golden quadratic and µ̆ is Golden linear, which is the
second double-Golden solution.

2.2 Inverse-Golden Duality

Second we consider a primal problem

minimize
∞∑

n=0

[
(xn − xn+1)2 + x2

n+1

]
(P2)

subject to (i) x ∈ R∞ (ii) x0 = c
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and a dual problem

Maximize 2cµ0 − µ2
0 −

∞∑
n=0

[
(µn − µn+1)

2 + µ2
n+1

]
(D2)

subject to (i) µ ∈ R∞ (ii) lim
n→∞ µn = 0

where c ∈ R1. We note that a difference between (P1) and (P2) is constant :
∞∑

n=0

[
x2

n + (xn − xn+1)2
]

= x2
0 +

∞∑
n=0

[
(xn − xn+1)2 + x2

n+1

]
.

The difference x2
0 = c2 is also preserved between (D1) and (D2). This enables us

to obtain a duality in terms of inverse-Golden number φ−1 = φ − 1 as follows.

Theorem 3. (Inverse-Golden duality) (i) The primal problem (P2) has the
minimum value m = φ−1c2 at the point

x̂ = c (1, (2 − φ), . . . , (2 − φ)n, . . .) .

(ii) The dual problem (D2) has the maximum value M = φ−1c2 at the point

µ∗ = φ−1c (1, (2 − φ), . . . , (2 − φ)n, . . .) .

Here we have also a Golden complementary duality :
(i) Both the minimum value function and the maximum value function are the
identical inverse-Golden quadratic (inverse-Golden dual).

m = M = φ−1c2.

(ii) Both the minimum point x̂ and the maximum point µ∗ constitute the Golden
paths, which are the same ones in (P1) and (D1), respectively.
(iii) The alternate sequence of both the Golden paths constitutes another Golden
path (Golden complement).

Further the minimum solution of (P2) yields the maximum solution of (D2).
Let (P2) have the minimum value m = φ−1c2 at the minimum point x̂. Then we
have

Max

[
2cµ0 − µ2

0 −
∞∑

n=0

[
(µn − µn+1)

2 + µ2
n+1

)]

= Max
µ0

[
2cµ0 − µ2

0 − min
{µn}n≥1

∞∑
n=0

[
(µn − µn+1)

2 + µ2
n+1

]]

= Max
µ0

[
2cµ0 − µ2

0 − φ−1µ2
0

]
= φ−1c2 for µ0 = φ−1c
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where the minimum is attained at

(µ̂1, µ̂2, . . . , µ̂n, . . .) = µ0

(
2 − φ, (2 − φ)2, . . . , (2 − φ)n, . . .

)
.

Theorem 4. (Double-Golden Solution 3): (φ−1 � φ−1) The functional equation

g(c) = Max
µ∈R1

[
2cµ − µ2 − g(µ)

]
c ∈ R1

has a maximum value function g(c) = φ−1c2 for maximum point function µ̆(c) =
φ−1c.

Corollary 2. (Double-Golden Solution 4): (φ−1 � φ) The functional equation

g(c) = Max
µ∈R1

[
−c2 + 2cµ − g(µ)

]
c ∈ R1

has a maximum value function g(c) = φ−1c2 for maximum point function µ̂(c) =
φc.

3 Lagrangean Method

In this section we show how the Lagrangean method derives a maximization
(dual) problem from the minimization (primal) problem.

Let us reconsider the primal problem

minimize
∞∑

n=0

[
x2

n + (xn − xn+1)2
]

(P1)
subject to (i) x ∈ R∞ (ii) x0 = c.

We introduce a sequence of variables u = {u0, u1, . . . , un, . . .} by

un = xn+1 − xn.

Then (P1) is formulated into a quadratic minimization under a linear constraint

minimize
∞∑

n=0

(
x2

n + u2
n

)
(P′

1)
subject to (i) xn+1 = xn + un n ≥ 0 (ii) x0 = c.

Let us now solve this problem through a Lagrangean multiplier’s method.
We introduce a sequence of variables µ = {µ0, µ1, . . . , µn, . . .} with the
property lim

n→∞µn = 0, which is called a Lagrange multiplier. Let us construct
the Lagrangean

L(x, u, µ) =
∞∑

n=0

[
x2

n + u2
n − 2µn(xn+1 − xn − un)

]
.
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Then it has the partial derivatives

Lxn = 2(xn + µn − µn−1) n ≥ 1

Lun = 2(un + µn) n ≥ 0

Lµn = −2(xn+1 − xn − un) n ≥ 0.

Here we notice that the Lagrangean is not one for a regular (a finite n variables
with a finite m constraints) extremal problem. The problem has a countably
infinite variables under a countably infinite linear constraints.

Lemma 2. Let (x, u) be an extremum point. Then there exists a µ satisfying
the condition that all the partial derivatives at point (x, u, µ) vanish:

Lxn = 0 n ≥ 1, Lun = Lµn = 0 n ≥ 0. (2)

Proof. Let x̂ = (x̂n)n≥0, û = (ûn)n≥0 be an extremum point for (P′
1). We take

any large positive integer N and consider a finite-truncated conditional mini-
mization problem of x = (xn)N

0 , u = (un)N
0 :

minimize
N∑

n=0

(
x2

n + u2
n

)
(TN ) subject to (i) xn+1 = xn + un 0 ≤ n ≤ N − 1

(ii) x̂N+1 = xN + uN

(iii) x0 = c.

This has (2N+1) variables x1, . . . , xN , u0, . . . , uN and (N+1) linear constraints.
Let us construct the Lagrangean LN by

LN (x, u, µ) =
N−1∑
n=0

[
x2

n + u2
n − 2µn(xn+1 − xn − un)

]

+ x2
N + u2

N − 2µN(x̂N+1 − xN − uN ) for µ = (µn)N
0 .

Then the point (x̂n)N
1 , (ûn)N

0 is also an extremum point for the truncated prob-
lem. It satisfies the linear independent constraint qualification [13]. Therefore,
Lagrange Multiplier Theorem (for a regular problem) implies that there exists
a (µ∗

n)N
0 such that (x̂n)N

1 , (ûn)N
0 ; (µ∗

n)N
0 satisfies

LN
xn

= 0 1 ≤ n ≤ N, LN
un

= LN
µn

= 0 0 ≤ n ≤ N.

Thus we have

x̂n + µ∗
n − µ∗

n−1 = 0 1 ≤ n ≤ N

ûn + µ∗
n = 0 0 ≤ n ≤ N

x̂n+1 − x̂n − ûn = 0 0 ≤ n ≤ N.
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Since N is arbitrarily large, we conclude that there exists a (µ∗
n)n≥0 such that

(x̂n)n≥1, (ûn)n≥0; (µ∗
n)n≥0 satisfies (2). This completes the proof. ��

Then (2) is equivalent to

xn = −(µn − µn−1) n ≥ 1

un = −µn n ≥ 0

un = xn+1 − xn n ≥ 0.

Now we solve this equivalent system in the following. Deleting u and µ, we get
a system of linear equations:

xn−1 − 3xn + xn+1 = 0 n ≥ 1, x0 = c. (3)

Thus we have
un = xn+1 − xn, µn = −(xn+1 − xn). (4)

We see that Eq.(3) has the solution2

xn = c(2 − φ)n n ≥ 0. (5)

Thus we have

un = − c

φ
(2 − φ)n, µn =

c

φ
(2 − φ)n. (6)

Lemma 3. It holds that for any finite N -stage process

N∑
n=0

(
x2

n + u2
n

)
=

N∑
n=0

[
x2

n + u2
n − 2µn(xn+1 − xn − un)

]

= c2 + 2cµ0 −
N∑

n=1

(µn − µn−1)
2 −

N∑
n=0

µ2
n − 2µNxN+1

+
N∑

n=1

[xn + (µn − µn−1)]
2 +

N∑
n=0

(un + µn)2 . (7)

for any (x, u) satisfying (i), (ii) and any µ ∈ R∞.

Lemma 4. The solution (x, u) in (5),(6) is a minimum point for (P′
1). Hence,

x is a minimum point for (P1).

Proof. We show that the (x, u) is a minimum point. Let (X, U) be any solution
satisfying

Xn+1 = Xn + Un n ≥ 0, X0 = c.

Here we take the µ in (6). We may consider the set of all feasible x satis-
fying lim

N→∞
µNxN+1 = 0 in (P1), because of the quadratic minimization and

2 A general solution of (3) is xn = A(2 − φ)n + B(1 + φ)n, where A + B = c. The case
A = c, B = 0 attains a minimum value for (P1).
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lim
N→∞

µN = 0. This set in turn includes the set of all feasible x satisfying

lim
N→∞

xN = 0. Thus letting N → ∞ in (7), we have

∞∑
n=0

(
x2

n + u2
n

)
= c2 + 2cµ0 −

∞∑
n=0

[
µ2

n + (µn − µn+1)
2
]

+
∞∑

n=1

[xn + (µn − µn−1)]
2 +

∞∑
n=0

(un + µn)2 . (8)

Similarly, we have for (X, U)

∞∑
n=0

(
X2

n + U2
n

)
= c2 + 2cµ0 −

∞∑
n=0

[
µ2

n + (µn − µn+1)
2
]

+
∞∑

n=1

[Xn + (µn − µn−1)]
2 +

∞∑
n=0

(Un + µn)2 . (9)

Since (x, u) satisfies

xn + (µn − µn−1) = 0, un + µn = 0, lim
n→∞µn = 0

a comparison between (8) and (9) yields

∞∑
n=0

(
x2

n + u2
n

)
≤

∞∑
n=0

(
X2

n + U2
n

)
.

This completes the proof. ��
From (9) we have a basic inequality as follows.

Lemma 5. It holds that
∞∑

n=0

(
x2

n + u2
n

)
= c2 + 2cµ0 −

∞∑
n=0

[
µ2

n + (µn − µn+1)
2
]

+
∞∑

n=1

[xn + (µn − µn−1)]
2 +

∞∑
n=0

(un + µn)2 . (10)

≥ c2 + 2cµ0 −
∞∑

n=0

[
µ2

n + (µn − µn+1)
2
]

for any (x, u) satisfying (i), (ii) and any µ satisfying lim
n→∞µn = 0. The equality

holds if and only if

xn = −(µn − µn−1) n ≥ 1 and un = −µn n ≥ 0.

This lemma states that

L(x̂, û : µ) ≤ L(x̂, û : µ∗) ≤ L(x, u : µ∗) (11)
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where

L(x, u : µ) =
∞∑

n=0

[
x2

n + u2
n − 2µn(xn+1 − xn − un)

]

x̂n = c(2 − φ)n, ûn = − c

φ
(2 − φ)n, µ∗

n =
c

φ
(2 − φ)n.

In fact, we have the equality between left-hand side and middle side:

L(x̂, û : µ) = L(x̂, û : µ∗) ∀µ ; lim
n→∞µn = 0.

Hence we have a maximization problem for µ = (µ0, µ1, . . . , µn, . . .) as follows:

Maximize c2 + 2cµ0 −
∞∑

n=0

[
µ2

n + (µn − µn+1)
2
]

(D1)
subject to (i) µ ∈ R∞ (ii) lim

n→∞ µn = 0.

Thus we have derived the desired dual problem together with the optimum
solution.

Lemma 6. The point µ∗ with µ∗
n =

c

φ
(2 − φ)n attains the maximum value

M = φc2 for (D1).

4 Conclusion

We have discussed a beautiful aspect in deterministic environment where the
Golden ratio has been incorporated in a complementary duality. This comple-
mentarity is differenct from the complemetary slackness in primal and dual op-
timization. The duality is based upon the Golden ratio. This approach has a
potential in extending the duality both in dynamic decison-making and in non-
deterministic environment.
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Abstract. Optimally micro-aggregating a multivariate data set is known to be
NP-hard, thus, heuristic approaches are used to cope with this privacy preserving
problem. Unfortunately, algorithms in the literature are computationally costly,
and this prevents using them on large data sets.

We propose a partitioning algorithm to micro-aggregate uniform very large
data sets with cost O(n). We provide the mathematical foundations proving the
efficiency of our algorithm and we show that the error associated to micro-
aggregation is bounded and decreases when the number of micro-aggregated
records grows. The experimental results confirm the prediction of the mathemat-
ical analysis. In addition, we provide a comparison between our proposal and
MDAV, a well-known micro-aggregation algorithm with cost O(n2).

1 Introduction

Information and communication technologies (ICT) foster the gathering of personal
data. The old paper-based files that occupy a large amount of space are being replaced
by electronic files that can be stored in tiny USB flash drives. Thus, a paradigm shift
is tacking place in many of our daily activities. An exponent of this paradigm shift is
the so-called e-administration that aims to achieve a paperless office, where all the old
paper-based processes are replaced by electronic ones. The main goal of this change is
to improve productivity and performance. At the same time, moving aside paper-based
offices may lead to total transparency and accountability and, by extension, to better
e-governance.

This novel way of understanding the management of data is especially reflected in
very important areas such as e-commerce and health-care that must conform to strict
regulations [1][5]. In addition, most countries have legislation which compels national
statistical agencies to guarantee statistical confidentiality [10][11][14]. Thus, protect-
ing individual privacy is a key issue for many institutions, namely statistical agencies,
Internet companies, manufacturers, etc.

Many efforts have been devoted to develop techniques guaranteeing privacy, but
there are many examples of negligence regardless. British politicians became aston-
ished when they were told on November 20th, 2007, that two computer disks full of

V. Torra and Y. Narukawa (Eds.): MDAI 2008, LNAI 5285, pp. 203–214, 2008.
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personal data of 25m British individuals had gone missing. The fate of the disks is un-
known and the privacy of the individuals, whose personal data are lost, is in danger.
This is the most recent of a series of similar unfortunate cases. In October, 2007, Her
Majesty’s Revenue and Customs (HMRC) lost another disk containing pension records
of 15.000 people. Data on 26.5m people were stolen from the home of an employee
of the Department of Veterans Affairs in America in 2006, and 658000 queries were
disclosed by the AOL search engine in August of the same year. These disclosures of
personal information are not new; however, due to the great advances in the Informa-
tion and Communication Technologies (ICTs), it is very easy to gather large amounts
of personal data, and mistakes such as the formerly explained are magnified.

Due to this dramatic increase in the amount of stored personal data, there is a real
need for efficient methods to protect privacy. Micro-aggregating data is a common solu-
tion to protect the privacy of the users, whose data is stored, however, micro-aggregating
very large data sets is a very costly task when current of-the-shelf methods are used.

With the aim of overcoming the limitations of the current micro-aggregation meth-
ods, we propose an efficient micro-aggregation algorithm that allows large amounts of
electronic data to be micro-aggregated in linear time, i.e. with a cost O(n). Our pro-
posal have been designed to work with uniformly distributed data, however, it can be
extended to work with other data distributions. Experiments confirm the results of the
mathematical analysis and proof the usefulness of our proposal.

The rest of the paper is organised as follows. Section 2 is a summary of the main
concepts of micro-aggregation and its methods. In Section 3 our proposal is explained
in detail. Section 4 contains the experimental results that proof the usefulness of our
method. Finally, the article concludes in Section 5.

2 Background

Personal privacy is a foundational principle stated by the Universal Declaration of Hu-
man Rights1. With the aim of protecting this foundational right, Statistical Disclosure
Control (SDC) was proposed as a discipline that sought to transform data in such a
way that they could be publicly released whilst preserving data utility and statistical
confidentiality. The point was to avoid disclosure of information that could be linked to
specific individual or corporate respondent entities.

It is necessary to keep the balance between the right of the individuals to privacy
and the right of the society to knowledge. The solution to this problem is somewhere
between two extremes: (i) No modification, i.e. maximal data utility but no privacy,
and (ii) total encryption, i.e. absolute privacy but no data utility.

Oneof theyoungest techniquesproposed to keep thisbalance ismicro-aggregation. It is
an SDC technique consisting in the aggregation of individual data. It can be considered as
an SDC sub-discipline devoted to the protection of individual data, also called micro-data.
Micro-aggregationcan be understood as a clustering problem with constraints on the size

1 “No one shall be subjected to arbitrary interference with his privacy, family, home or corre-
spondence, nor to attacks upon his honour or reputation . . .” Universal Declaration of Human
Rights.
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of the clusters. It is related to other clustering problems (e.g. dimension reduction or mini-
mum squares design of clusters). However, the main difference is that micro-aggregation
does not consider the number of clusters to generate or the number of dimensions to re-
duce, but the minimum number of records that must be grouped in the same cluster.
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Fig. 1. Example of univariate micro-aggregation where the minimum cardinality of the groups is
k = 3

When micro-aggregation is used, two main goals have to be kept in mind:

– Preserving data utility. Similar records should be micro-aggregated instead of dif-
ferent ones. In the example given in Figure 1, groups of three records are built and
aggregated. Note that records in the same group are similar.

– Protecting respondents’ privacy. Data have to be sufficiently modified to pre-
vent re-identification or disclosure. In the example given in Figure 1, after micro-
aggregating the original data, it is impossible to distinguish records from the same
group. Thus, the probability of linking a respondent with his/her micro-data is in-
versely proportional to the number of aggregated records.

In order to determine the information loss produced by micro-aggregation the Sum
of Squared Errors (SSE) is used (cf. Expression 1).

SSE =
g

∑
i=1

ni

∑
j=1

(xij − x̄i)′(xij − x̄i) (1)

where g is the number of groups, ni is the number of records in the i-th group, xij is the
j-th record in the i-th group and x̄i is the average record of the i-th group.

This SSE measure is generally compared with the total error (SST) defined in
Equation 2.

SST =
n

∑
i=1

(xi − x̄)′(xi − x̄) (2)

where n is the number of records in the data set, xi is a record of the data set and x̄ is
the average record of the data set.
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Given a homogeneity measure such as the SSE and a security parameter k, which
determines the minimum cardinality of the groups, the micro-aggregation problem can
be enunciated as follows:

Given a data set D with n records in a characteristic space R
d, the problem

consists in obtaining a k-partition2 P of D, so that the SSE of P is minimised.
Once P is obtained, each record of every part of P is replaced by the average
record of the part.

The micro-aggregation problem is known to be NP-hard [9] for multivariate data sets,
thus, heuristic methods must be used to solve it. There is a plethora of this kind of meth-
ods to address the multivariate micro-aggregation problem [15]. Some of them are based
on building a tree structure connecting the records in the data set and partition the tree to
generate a k-partition. Examples of this kind are the Minimum Spanning Tree Partition-
ing (MSTP) proposed in [7] and the more recently proposed µ-approximation [3]. The
main limitation of the MSTP remains in its foundation, i.e. in the minimum spanning
tree. Although it could be very useful when the data are distributed in clusters, it fails to
properly adapt to the data when they are distributed in a scattered way. In addition, both
algorithms have a high computational cost because they must compute the distances
between all records in the data set to build the tree structure.

Instead of structuring the data in trees or graphs, an alternative way to tackle the
problem is greedily building groups of similar records. Examples of this kind are
the Maximum Distance (MD) method [2] and the Maximum Distance to Average
Vector (MDAV) method [4,6]. A slight modification of the same construction was
described in [7] under the name Centroid-Based Fixed-Size Micro-aggregation and,
in [12] Solanas et al. proposed an improvement on MDAV named Variable-MDAV, V-
MDAV for short. The main advantage of these methods is their simplicity but their
computational complexity (i.e. MD has a cubic cost and the others have a quadratic
cost) prevents their use with very large data sets.

In [13] genetic algorithms are used to micro-aggregate small data sets. Although this
method performs very well with small amounts of data (i.e. with less than 100 records),
it cannot be applied to large data sets. An improvement of this method that mixes MDAV
and genetic algorithms was proposed in [8].

3 Our Proposal

In this section we define our proposal. Firstly, we explain its foundational ideas and a
high-level algorithm. Afterwards, we provide some details of the mathematical model
and, we analyse the behaviour of our method for several values of the parameters.

3.1 Rationale

Current micro-aggregation algorithms are very costly (i.e. at least O(n2)) because they
compute the similarity (e.g. the squared Euclidean distance) between all possible pairs

2 A k-partition of D is a partition where its parts have, at least, k records of D.
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a b c

Fig. 2. Graphical example of data partitioning. a) Set of points uniformly distributed in a three
dimensional space. b) Hypercubes of edge � = 0.25 generated by our algorithm. c) Wrapping of
points by the generated hypercubes.

of records in the original data set. Once these similarities are known, the records are
grouped.

Our proposal is absolutely different. Instead of using the similarity between records
to group them, we partition the hyper-space to which the records belong. By partitioning
the hyper-space we are implicitly grouping the records that are distributed inside it. By
construction, the records that are in the same hypercube are very likely to be similar,
thus, micro-aggregating them in the same group leads to the reduction of the SSE.

The most important contribution of our proposal is that our method dramatically
reduces the time needed to micro-aggregate a given data set whilst the information loss
is not significantly different from the one obtained by other costlier solutions.

Take as an example the set of records depicted in Figure 2(a). It is apparent that com-
puting the distance between all possible pairs of records would be extremely costly. On
the contrary, computing the hypercubes depicted in Figure 2(b) is easy and computa-
tionally cheap. Finally, assigning each record to a group (i.e. to a hypercube) is very
easy thanks to the regularity of the hypercubes. Figure 2(c) depicts how the records are
wrapped by their corresponding hypercubes.

3.2 Algorithm

Our method receives as input a data set D containing n records, and a security para-
meter k. Firstly, the records in D are normalised (step 1 in Algorithm 1) to assure that
the hyper-space H S has a unitary edge (i.e. the length of the hypercube that wraps
H S is 1). Next, the optimal length � of the hypercubes is computed according to the
number of records in H S and the privacy parameter k (step 2 in Algorithm 1) cf. to
Section 3.5 for further details on the computation of �. Once � is determined, the set
of hypercubes (HC) is created (step 3 in Algorithm 1). A hypercube is defined by its
bounds in each dimension. For example, the bounds {(0,0.25),(0,0.25)} define a two-
dimensional hypercube (i.e. a square) that wraps all the points (x,y) such as 0 < x ≤ 0.25
and 0 < y ≤ 0.25. Each generated hypercube (HCi) is identified by a unique index (i).
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Algorithm 1. Efficient Hyper-Cubes-based Micro-aggregation
Data: Data set D, Integer k, Integer n.
Result: k-partition.
D′ ←−Normalise(D);1

� ←− ComputeHypercubeEdgeLength(n,k);2

HC ←− GenerateSetOfHypercubes(�);3

for Each record ri in D′ do4

< HCj,ri > ←− AssingRecordToHypercube(HC,ri);5

Card(HCj) := Card(HCj) + 1;6

end7

for Each Hypercube in HC do8

if Card(HCj)< k then9

Neigh = DetermineHypercubeNeighbour(HCj );10

FuseHypercubes(HCj ,Neigh);11

HC ←− RemoveHypercubeFromSetOfHypercubes(HCj );12

Card(Neigh) := Card(Neigh)+Card(HCj );13

end14

end15

return set of tuples < HCj,ri >16

After generating HC, each record in H S has to be assigned to a hypercube HCi (step
5 in Algorithm 1). This assignment can be understood as a tuple of two indexes: the
first index refers to the hypercube HCj that contains the record and, the second index
identifies the record ri. Once a record is assigned to a hypercube, the cardinality of the
hypercube (e.g. a counter) is increased (step 6 in Algorithm 1).

At this stage of the process, all records are already assigned to a hypercube. How-
ever, due to the fact that � is an approximation (cf. Section 3.5), a little fraction of
hypercubes can be smaller and, thus, they can contain less than k records. The aim of
this algorithm is to obtain a k-partition. Hence, all hypercubes must contain, at least, k
records. In order to cope with this constraint, low-cardinality hypercubes are fused with
their closest neighbours (steps 9-14 in Algorithm 1). Note that, by construction, every
low-cardinality hypercube has a complete hypercube (i.e. one having at least k records)
adjacent to it, and the fusion of these hypercubes is straightforward and computation-
ally cheap. Once all low-cardinality hypercubes have been fused, the algorithm finishes
and returns the set of tuples < HCj,ri > that represent the obtained k-partition.

3.3 Analytical Model

We assume that records in a data set D can be represented as points randomly scattered
on a d-dimensional hyper-space (H S).

Our proposal is based on the partition of H S in d-dimensional hypercubes (HCs) of
edge �. We indicate each of the (1/�)d hypercubes with a unique index (HCi). Further,
in a similar way, it is straightforward to find a bijection that binds a point in H S to a
specific hypercube. Hence, a point q belonging to H S can be identified in two ways:
first, using its d co-ordinates; second, via a tuple q<i, j>, where the index i points to the
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hypercube of index i (HCi), and the index j refers to a unique index that identifies a
unique point within HCi.

Let Xi, j be the random variable that takes on the value 1 if the point q<i, j> lies within
HCi, and 0 otherwise. Let Ci be the random variable that counts the number of points
lying within HCi. If we note that E[Xi, j] = �d since the points are uniformly distributed,
we have that:

µi = E[Ci] = E

[
n

∑
i=1

Xi, j

]
=

n

∑
i=1

E[Xi, j] =
n

∑
i=1

�d = n�d

Now, since the points in HCi are iid, we have that for 0 < ε < 1 the following equation
holds:

Pr[|Ci −µi| > εµi] ≤ 2× exp

(
−ε2

3
µi

)
(3)

Note that Equation 3 provides an upper bound on the probability that a single HCi

has a number of points diverging from its mean by more (or less) than εµi. We are
interested in identifying a condition that makes all of the HCi to satisfy Equation 3.
We can derive such condition as follows: let us define the event Bad=“at least one of
the hypercubes does not satisfy Equation 3”, we have that this event happens with the
probability given in Equation 4.

Pr[Bad] = Pr[|C1 −µi| > εµi ∨ . . .∨|C1/�d −µi| > εµi] (4)

≤ (1/�d)Pr[|Ci −µi| < εµi] ≤ 2× exp
(
− ε2

3 µi − ln�d
)

Note that the above equation fully characterises our model. For instance, if we set k = µi
and ε = 1/2, from Equation 4 we have that:

Pr[Bad] ≤ 2×exp

(
− k

12
− ln�d

)
= 2×exp

(
− k

12
− ln

k
n

)
= 2×exp

(
− k

12
− lnk + lnn

)

Hence, for k = 12lnn, we have:

Pr[Bad] ≤ 1
6lnn

that is, all the hypercubes will have a number of points that is between k/2 and 2k with
probability 1

6 lnn .
Finally, note that once set the parameters that provide the needed upper bound on the

probability for the event Bad to happen, the corresponding value � can be computed as:

� = d

√
k
n

(5)
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(a) Error graph as a function of k and n
for ε = 0.5.

(b) Error graph as a function of ε and n
for k = 160.

(c) Error graph as a function of ε and k
for n = 1,000,000.

Fig. 3. 3D representation of the parameters ε, k and n

3.4 Model Validation

It is worth noticing that Equation 4, whilst providing a complete characterisation for our
model, is dependant on three parameters only: n, k, and ε. To assess how these parame-
ters affect the value of Pr[Bad], we have varied the value k in the range [100, . . . ,500]
using an incremental step of 100; the value n is varied in the range [106, . . . ,107], with an
incremental step of 106, whilst ε is varied in the range [0.1, . . . ,0.9] with an incremen-
tal step of 0.1. To obtain a 3D representation, we fixed one of these three parameters,
whilst allowing the other two to range in the described intervals. In particular, to obtain
Figure 3(a) we set ε = 0.5, for Figure 3(b) we chose k = 160, whilst n = 106 for Figure
3(c). In each of the three figures, it can be noticed that the error probability (Pr[Bad])
decreases exponentially fast as free parameters increase. In particular, note from Figure
3(a) (ε = 0.5) that it is enough to select k > 150 to have Pr[Bad] reduced to an almost
negligible value. From Figure 3(b) it turns out that for any ε > 0.4 the error probability
Pr[Bad] is close to zero. Finally, from Figure 3(c) (n = 106) is apparent that for any
k ≥ 100, if one chooses ε > 0.5, the probability Pr[Bad] is very close to zero.

3.5 Tuning the � Value

We normalise the points in H S , thus, H S has an edge equal to one. From this result, it
follows that the edge of each HCi will be between zero and one. However, note that it
could be the case that � ∈ I , that is � belongs to the set of the irrational numbers; this
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situation could not be treated on a finite state machine. Hence, we add the constraint
that � has to be expressed as � = 1/p, where p is an integer. Therefore we introduce
the value (�) that is, an approximation of the ideal edge for the HCi, needed due to the
finiteness of the computing machines. The simplest strategy to obtain (�), is to set (�)−1

to the smallest integer larger than (�)−1, that is: (�)−1 = &(�)−1'.
Note that in this way, we have that all but a fraction (ĤC) of the hypercubes have

an edge larger than the original �. Hence, for those HCi with edge larger than �, the
probability that the number of points within each HCi is less than k further decreases.
However, note that there could be a a fraction of hypercubes (ĤC) that have an edge
smaller than (�). Indeed, this fraction will always exist whenever �−1 �= &�−1'. More-
over, it could be possible that the resulting edge for hypercubes in ĤC is even smaller
than �. Hence, these hypercubes could host less than k points. To cope with this issue,
we extend the proposed partitioning method as follows: each of the hypercube in ĤC
(if the edge is shorter than (�)) is merged with a neighbouring hypercube that has edge
(�). It can be shown that, by construction, such a neighbour always exists and that none
of such neighbours is assigned to more than one hypercube in ĤC. Further, from the
practical point of view, as intuition suggests and experimental result will confirm, the
impact of this approximation is negligible.

In an extended version of this paper we plan to show that a finer, but more complex,
size for � exists; however due to space limitations we consider this issue out of the scope
of this paper.

3.6 Dealing with Non-uniform Data Distributions

We have assumed that points in H S are iid. We are aware that, in many applications,
data do not follow such a distribution pattern. However, we have detailed the mathe-
matical foundations of the proposed method, and

we have shown that it provides very interesting results. In particular, the relative error
is very low, whilst the computational cost incurred by the proposed method to partition
H S is linear.

Furthermore, we believe that the proposed method could be used when data show a
different statistical distribution, such as the Gaussian one. The key underlying idea to
deal with this problem is to relax the assumption that � is a constant. Indeed, we can
tune � to leverage the different data density in H S provided by a known data distribution
function, so that each of the resulting HCi still satisfy the cardinality constraint imposed
by micro-aggregation. Our current investigations focus on this direction and we will
tackle this problem in a future extension of this paper.

4 Experimental Results

In the following we describe the experiments that eventually show the high quality
results achievable with our proposal. The experimental scenario is the following: we
generated several sets of records uniformly at random in a 3-dimensional space. The
size of the generated sets varied in the range [106, . . . ,107]. For each of the generated
sets we computed the SST (cf. Equation 2) and the SSE (cf. Equation 1) of the k-partition
obtained by our method.
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(a) Ratio between the SSE and SST in %. (b) Evolution of the information loss dif-
ference between MDAV and our method

Fig. 4. Results of our method

Table 1. Brief comparison between the information loss of MDAV and our method

MDAV Our
SSE
SST ×100 SSE

SST ×100
n k % % Diff.

2×106 1000 0.75 1 0.25
2×106 800 0.64 0.84 0.2
2×106 600 0.53 0.70 0.17
2×106 400 0.40 0.54 0.14
2×106 200 0.25 0.35 0.10
3×106 1000 0.57 0.87 0.3
3×106 800 0.49 0.71 0.22
3×106 600 0.40 0.54 0.14
3×106 400 0.31 0.41 0.1
3×106 200 0.19 0.26 0.07

MDAV Our
SSE
SST ×100 SSE

SST ×100
n k % % Diff.

4×106 1000 0.47 0.62 0.15
4×106 800 0.41 0.54 0.13
4×106 600 0.33 0.44 0.11
4×106 400 0.25 0.35 0.10
4×106 200 0.16 0.22 0.06
5×106 1000 0.41 0.54 0.13
5×106 800 0.35 0.46 0.09
5×106 600 0.29 0.39 0.1
5×106 400 0.22 0.32 0.1
5×106 200 0.14 0.19 0.05

In Figure 4(a), on the z-axis we report the value of the ratio (SSE/SST) ∗ 100, that
is the percentage of the total error introduced by our micro-aggregation proposal. Note
that for any value of k and n in the considered interval, the ratio does not exceed 1.6%,
and that for a wide range of parameters, the same ratio is well below 0.2%. Further, the
behaviour of the plot conveys another useful information: the quality of the implemen-
tation that accommodates the need of merging (few) hypercubes is highly satisfactory
(i.e. less than 1.6% of the total error is inherited). Moreover, refining the value assigned
to (�) will further improve these results.

The fact that our algorithm has a linear cost O(n) is a clear advance in the field of
privacy protection by means of micro-aggregation. However, we have also compared
the results of our method with a well-known O(n2) micro-aggregation algorithm i.e.
MDAV [4,6] to proof that the dramatic computational cost reduction does not imply a
significant increase in the error.
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In Table 1, MDAV is compared with our method in terms of information loss. Note that
we have used data sets with less than 5×106 records. Although our method obtains the
results in few minutes, MDAV needs days to obtain them when the data sets are very large
e.g. 10×106. The results in Table 1 indicate that MDAV is better than our method in terms
of information loss. However the difference between both methods is not significant i.e.
less than 0.3%. In addition, as can be clearly seen in Figure 4(b), the difference between
both methods tends to decrease when the number of records increases.

These results proof that our method is useful and the only practical choice to micro-
aggregate very large data sets in a reasonable time.

5 Conclusions

We have proposed an efficient multivariate micro-aggregation method that is able
to micro-aggregate very large data sets in linear time O(n). This is the first micro-
aggregation method that achieves this goal.

We have applied our method to very large data sets of up to 107 records, where clas-
sical micro-aggregation algorithms cannot be applied due to their high computational
cost. Thus, we have chosen values for k which are higher than the common ones. If it is
necessary to obtain groups of very small cardinality, it is possible to use our method to
partition the data in groups of, let’s say a thousand records, and then apply a classical
micro-aggregation algorithm to refine the k-partition.

In this paper we have established the foundations of a novel and efficient micro-
aggregation algorithm. In the near future we plan to extend our proposal by investigating
the following lines:

– Extend the algorithm to cope with non-uniform data
– Analyse the use of our algorithm as a pre-process, whose results could be used by a

classical micro-aggregation algorithm to obtain a better k-partition in a reasonable
time.

– Improve the SSE of our algorithm by recursively divide the hypercubes with more
than 2k−1 records.
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Abstract. Microaggregation is one of the most commonly employed
microdata protection methods. This method builds clusters of at least k
original records and replaces the records in each cluster with the centroid
of the cluster. Usually, when records are complex, i.e., the number of
attributes of the data set is large, this data set is split into smaller blocks
of attributes and microaggregation is applied to each block, successively
and independently. In this way, the information loss when collapsing
several values to the centroid of their group is reduced, at the cost of
losing the k-anonymity property when at least two attributes of different
blocks are known by the intruder.

In this work, we present a new microaggregation method called One
dimension microaggregation (Mic1D − κ). This method gathers all the
values of the data set into a single sorted vector, independently of the
attribute they belong to. Then, it microaggregates all the mixed val-
ues together. Our experiments show that, using real data, our proposal
obtains lower disclosure risk than previous approaches whereas the in-
formation loss is preserved.

Keywords: Microaggregation, k-anonymity, Privacy in Statistical
Databases.

1 Introduction

Confidential data is usually released to third parties (e.g., politicians and re-
searchers) for data analysis. This dissemination has to be in accordance with
laws and regulations to avoid the publication of critical private information. In
this situation, it is necessary to release data preserving the statistics without
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revealing confidential information. This is a typical problem, for instance, in
official statistics institutes.

Special efforts have been made to develop a wide range of protection methods.
These methods aim at guaranteeing an acceptable level of protection of the
confidential data. Specific areas such as Privacy in Statistical Databases (PSD)
tackle the problem of protecting confidential data in order to publicly release
it, without revealing confidential information that could be linked to an specific
individual or entity. Good surveys about protection methods can be found in
the literature [1,3].

Recently, microaggregation has emerged as one of the most promising data
protection methods. For example, the work in [7] shows that microaggregation
is used by many official statistics institutes for data anonymization. The basic
implementation of microaggregation [3,4,16] works as follows: given a data set
with A attributes, small clusters of at least k elements (records) are built and
each original record is replaced with the centroid of the cluster to which the
record belongs. A certain level of privacy is ensured because k records have an
identical protected value (k-anonymity [15,17,18]).

However, when the complexity of the records in the data set is large and, thus,
the number of attributes A is large, microaggregation techniques suffer from a
low statistical utility. This is so because the larger the number of attributes,
the larger the distance between the original records in the data set and their
corresponding centroids. Therefore, a lot of information of the original data is
lost when the protected data set is released.

1 To solve this drawback, the following natural strategy is usually used:
the data set is split into smaller blocks of attributes and microaggregation
is independently applied to each block. In this way, the information loss is
lower, at the cost of an increase of the disclosure risk. In other words, the
property of k-anonymity is not ensured anymore, as we explain later in this
paper.

In this work, we propose to combine a set of preprocessing steps along with
the microaggregation in order to minimize the disclosure risk without losing
information. We test this new method using real data sets showing that Mic1D−
κ is able to outperform previous microaggregation methods diminishing the risk
of disclosure without increasing the information loss. Specifically, we compare
our new method with one of the most commonly used microaggregation methods,
the MDAV (Maximum Distance to Average Vector) algorithm [4], showing that
Mic1D − κ achieves lower disclosure risk than MDAV when different groups of
attributes are known by an intruder.

This paper is organized as follows. In Section 2 we review some basic concepts
related to protection methods in general (and microaggregation in particular).
In Section 3, we present our new microaggregation method called One dimension
microaggregation. Section 4 is devoted to compare traditional MDAV microag-
gregation with our new microaggregation method with real data sets; we explain
the ingredients of our experiments and the obtained results. Finally, Section 5
draws some conclusions and presents some future work.



Improving Microaggregation for Complex Record Anonymization 217

2 Preliminaries

In this section, we explain some basic concepts that will be useful for the rest of
the paper. Namely, we first describe the scenario where a microdata protection
method is applied to preserve the privacy of the owners of some statistical data.
Then, we recall one of the most used protection methods, microaggregation, and
one of its heuristic variants: MDAV. Finally, we describe a way to measure the
quality of a given microaggregation method, according to the levels of privacy
and statistical utility that it provides.

2.1 Statistical Data Protection

A data set X can be seen as a matrix with n rows (records) and A columns (at-
tributes), where each row contains A attributes of an individual. The attributes
in a data set can be classified according to two different categories, identifiers
or quasi-identifiers, depending on their capability to identify unique individu-
als. Among the quasi-identifier attributes, we distinguish between confidential
and non-confidential ones, depending on the kind of information they contain.
Because of this, we write X = Xid||Xnc||Xc.

In this paper, we consider the following scenario for statistical disclosure con-
trol, which was defined in [3] to compare several protection methods.

(i) Identifier attributes in X are either removed or encrypted. Therefore reduce
X to X = Xnc||Xc.

(ii) Confidential quasi-identifier attributes Xc are not modified, and so we have
X ′

c = Xc; in this way, the statistical utility of the confidential attributes is
completely preserved.

(iii) A microdata protection method ρ is applied to non-confidential quasi-
identifier attributes, in order to preserve the privacy of the individuals
whose confidential data is being released. This leads to a protected data
set X ′

nc = ρ(Xnc).
(iv) The released data set is X ′ = X ′

nc||X ′
c = ρ(Xnc)||Xc.

After applying this protection procedure, the disclosure risk caused by an in-
truder that, first, obtains non-confidential attributes from other sources and,
then, tries to re-identify entities by using record linkage methods between these
external information and Xnc is reduced, since Xnc has been obfuscated by using
X ′

nc instead.

2.2 Microaggregation

As we explained before, microaggregation builds small clusters of at least k
elements of A attributes and replaces the original records by the centroid of the
cluster to which the records belong.

The goal of a microaggregation method is to minimize the total Sum of the
Square Error

SSE =
c∑

i=1

∑
xij∈Ci

(xij − x̄i)T (xij − x̄i),
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where c is the total number of clusters, Ci is the i-th cluster and x̄i is the centroid
of Ci. The restriction is |Ci| ≥ k, for all i = 1, . . . , c.

If a microaggregation method is applied to all the A attributes of the original
data set X at the same time; then, the resulting protected data set X ′ satisfies
the property of k-anonymity [18]: each protected record can correspond to at
least k original records. However, in order to increase the statistical utility of
the released (protected) information, statistical agencies usually split the whole
data set X into blocks of a few attributes ai (

∑C
i=1 ai = A where C is the total

number of blocks), and then apply a microaggregation method to each block,
independently. In this way, k-anonymity is not preserved anymore.

In the case of univariate microaggregation (ai = 1), there exist polynomial
time algorithms to obtain the optimal microaggregation [8]. The main drawback
of univariate microaggregation is that it provides a bad level of privacy, due
to its high disclosure risk [13]. However, for the multivariate case (ai > 1), the
problem of finding the optimal microaggregation is NP-hard [14]. For this reason,
multivariate microaggregation methods are heuristic. In this paper, we recall one
of the most commonly used multivariate techniques: MDAV microaggregation.

2.3 MDAV Microagregation

The MDAV (Maximum Distance to Average Vector) algorithm [4] is a heuristic
algorithm for clustering records in a data set X so that each cluster is constrained
to have at least k records.

MDAV works as follows. First, MDAV computes the average record x̄ of all
records in X , then, MDAV builds two clusters. In order to build them, MDAV
considers the most distant record xr to the average record x̄ and forms a cluster
around xr (this cluster contains xr together with the k−1 closest records to xr).
When the cluster is done, all the records belonging to this cluster are removed
from X . Following, the most distant record xs from record xr is taken and a
new cluster is done around xs, again, all the records belonging to this cluster
are removed. This process is repeated until all the records are assigned to one
cluster. Finally, the protected data set X ′ is built replacing the original records
in X by the centroid of the cluster to which the record belongs.

Note that this process can be done considering all the attributes in the data
set at the same time, or the data set can be split into smaller blocks of attributes
and MDAV is independently applied to each block. The former option ensures
the k-anonymity property with a large information loss, and the second one
ensures a small information loss, but k-anonymity property is not preserved any
more.

2.4 Performance Measure for Microaggregation

A microdata protection method must guarantee a certain level of privacy (low
disclosure risk). At the same time, since the goal is to allow third parties to
perform reliable statistical computations over the released (protected) data, the
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protection method must ensure somehow that the protected data is statistically
close to the original one.

Therefore, we have two inversely related aspects to measure, for each microdata
protection method: the disclosure risk (DR), which is the risk that an intruder
obtains correct links between the protected and the original data; and the infor-
mation loss (IL) caused by the protection method. When one of them increases,
the other one decreases. The two extreme cases are the following ones: (i) if the
original microdata is released, then information loss is zero, but the disclosure risk
is maximum; (ii) if the original microdata is encrypted and then released, the dis-
closure risk is (almost) zero, but the information loss is maximum.

There are different measures proposed in the literature to evaluate the quality
of a data protection method. Such measures can be general (for all protection
methods) or specific for a given data protection method. For instance, the goal of
microaggregation is to minimize the total Sum of the Square Error SSE. Since
there are no optimal solutions in polynomial time to multivariate microaggrega-
tion, and the methods used are heuristic, the actual value of SSE for a given
method is a measure of its quality with regards to information loss.

Regarding privacy, microaggregation provides, by definition, some level of
anonymity. If the method is applied to all the attributes (a single block), then
the initial parameter k indicates the achieved anonymity: for each protected
record, there are at least k possible original records which can correspond to it.
However, if the original data set is split into r blocks and the microaggregation
method is applied to each block independently, then the final level of anonymity
obviously decreases: two records which are in the same cluster for one block
of attributes may be in different clusters for other blocks, which results in two
different protected records.

A possible way of computing the real level of anonymity achieved by a mi-
croaggregation method is to consider the ratio between the total number n of
records and the number of protected records which are different. This gives the
average size of each “global cluster” in the protected data set. We denote as k′

this real anonymity measure:

k′ =
n

|{x′|x′ ∈ X ′}|

It was introduced in [11] and used in other papers like [12].

3 One Dimension Microaggregation

One dimension microaggregation (Mic1D-κ) uses the same vision of data handling
based on the vectorization, sorting and partitioning of all the values in the data
set presented in [9]. There are several aspects that motivate these three steps:

Vectorization. The first step is vectorization. The basic idea is to gather all the
values in the data set in a single vector, independently of the attribute they
belong to. This way, we are ignoring the attribute semantics and, therefore,
the possible correlation between two different attributes in the data set.
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Sorting. Once all the values are inserted in the unique vector, it is necessary to
sort them in order to minimize the SSE value when the clusters (partitions)
are done. Note that sorting the values is a way of adding noise.

Partitioning. In order to ensure a certain level of privacy (k-anonymity), we
propose to split the data set in several κ-partitions and to calculate the
average value for each partition. Modifying the value of κ, Mic1D-κ allow us
to adjust the trade-off between information loss (SSE) and disclosure risk.
Note that if the data set was not sorted, κ would not have this property.

Since the ranges of values of two different attributes could differ significantly, the
sorting step may not merge all the values coming from different attributes appro-
priately. For this reason, after the partitioning is complete, data is normalized
in each partition and it is sorted and re-partitioned again. Data normalization
improves the attribute merging and therefore, it is more difficult for an intruder
to re-identify an individual. Finally, data in each partition is substituted by their
centroid. All the steps of Mic1D-κ are represented in Figure 1.

Mean value
computation

De-
normalization

{pm,n} {pm,n}
Vectorization Partitioning NormalizationSorting

D

V VS {Pm} {Pm}

Data 
Pre-processing

Data Set 
Protection

N = R · a
R

a

P

k

r

Fig. 1. Mic1D-κ schema

Formally speaking, let D be the original data set to be protected. We denote
by R the number of records in D. Each record consists of a numerical attributes
or fields. We assume that none of the registers contain blanks. We denote by N
the total number of values in D. As a consequence, N = R · a.

Let V be a vector of size N . Mic1D-κ treats values in the data set indepen-
dently of the attribute they belong to. In other words, the concepts of record
and field is ignored and the N values in the data set are placed in V . We call
this process desemantization.

First, V is sorted increasingly. Let us denote by Vs the ordered vector of size N
containing the sorted data and vi the ith element of vector Vs, where 0 ≤ i < N .

Next, Vs is divided into smaller sub-vectors or partitions. Each sub-vector is
normalized into the [0, 1] interval and they are all sorted and partitioned again.
We define κ, where 1 < κ ≤ N , as the number of values per partition. Note
that if κ is not a divisor of N the last partition will contain a smaller number
of values. Let P be the number of κ-partitions. We call r the number of values
in the last partition where 0 ≤ r < κ. Therefore, N = κP + r. If r > 0 the we
have P + 1 partitions. We denote by Pm the mth partition.



Improving Microaggregation for Complex Record Anonymization 221

Let vm,n be defined as the nth element of Pm:{
vm,n := vmκ+n n = 0 . . . κ − 1 m = 0 . . . P − 1
vP,n := vPκ+n n = 0 . . . r − 1

For each partition Pm, the mean value of its components is computed:

µm =
κ−1∑
n=0

vm,n

κ
m = 0 . . . P − 1 µP =

r−1∑
n=0

vP,n

r

where the latter expression is applied to the last partition if r > 0, i.e., if κ does
not divide the total number of values in the data set.

The protected value pm,n for vm,n is then:{
pm,n = µm n = 0 . . . κ − 1 m = 0 . . . P − 1
pP,n = µP n = 0 . . . r − 1

Finally, Mic1D-κ de-normalizes the data into the original range. The protected
values are placed in the protected data set in the same place occupied by the
corresponding vm,n in the original data set. This way, we are undoing the sorting
and vectorization steps.

4 Experimental Results

We have tested Mic1D-κ and compared our results with those obtained by the
MDAV algorithm, using the Census [19] and Water-treatment [10] data sets.
The former was extracted using the Data Extraction System of the U.S. Census
Bureau and contains 1080 records consisting of 13 numerical attributes. The
latter was extracted from the UCI repository and contains 35 attributes and
380 entries. These data sets have been used in previous works [3,11] to compare
different microaggregation techniques.

As shown in [12], when protecting a data set using multivariate microaggre-
gation, the way in which the data is split to form blocks is highly relevant with
regard to the degree of privacy achieved (k′ value). Similarly, we have reduced
both data sets to have 9 attributes, which we detail in Tables 1 and 2.

In both data sets, attributes a1, a2 and a3 are highly correlated, as well as
attributes a4, a5 and a6 and attributes a7, a8 and a9. On the contrary, attributes
of different blocks are non-correlated. For our experiments, when protecting data
using MDAV microaggregation, we assume attributes to be split in three blocks
of three attributes each. Also, we consider two situations when protecting the
data sets using MDAV microaggregation: blocking correlated attributes and thus
non-correlated blocks, i.e., (a1, a2, a3), (a4, a5, a6) and (a7, a8, a9); or blocking
non-correlated attributes but correlated blocks, i.e., (a1, a4, a7), (a2, a5, a8) and
(a3, a6, a9). Testing these two cases will let us study the impact of the choice of
the attributes for the microaggregation groups, based on their correlations.

For each data set and attribute selection method, we apply MDAV microag-
gregation using the same parameterizations as those in previous works [11,12].
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Table 1. Attribute description of the Census data set

id Name Description

a1 AGI Adjusted gross income
a2 FICA Social security retirement payroll deduction
a3 INTVAL Amount of interest income
a4 EMCONTRB Employer contribution for health insurance
a5 TAXINC Taxable income amount
a6 WSALVAL Amount: Total wage and salary
a7 ERNVAL Business or farm net earnings in 19
a8 PEARNVAL Total person earnings
a9 POTHVAL Total other persons income

Table 2. Attribute description of the Water data set

id Name Description

a1 PH-E Input pH to plant
a2 PH-P Input pH to primary settler
a3 PH-D Input pH to secondary settler
a4 DQO-E Input chemical demand of oxygen to plant
a5 COND-P Input conductivity to primary settler
a6 COND-D Input conductivity to secondary settler
a7 DBO-S Output biological demand of oxygen
a8 SS-S Output suspended solids
a9 SED-S Output sediments

Namely, we protect the data sets using MDAV with parameter k = 5, 25, 50, 75,
100 for the Census data set, and k = 5, 10, 15, 20, 25 for the Water-treatment
data set. The selection of these values aims at covering a wide range of SSE
values and, thus, studying scenarios with different information loss values.

For Mic1D-κ, we use κ = 3000, 3200, 4000, 4400, 5000 for the Census data
set and κ = 300, 500, 800, 850, 900 for the Water-treatment data set. Note
that, since Mic1D-κ desemantizes the data set, there is no point in considering
different situations related to the correlation of the attributes and, therefore, we
protect the data set just once for each parametrization. In order to make the
comparison fair, we have chosen the values of κ in Mic1D-κ to obtain similar
SSE values to those obtained by MDAV after protecting the data sets.

We consider that a possible intruder knows the value of three random at-
tributes of the original data set. Different tests are performed assuming that the
intruder knows different sets of three attributes. Depending on these attributes
the intruder will have information coming from one or more groups. Table 3
shows all the considered possibilities.

First, we suppose that the three known attributes belong to the same MDAV
microaggregated block (e.g. (a1, a2, a3) in the correlated scenario or (a1, a4, a7)
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Table 3. Different groups of variables known by the intruder

1G (a1, a2, a3), (a4, a5, a6), (a7, a8, a9)

C
o
rr

el
a
te

d

2G
(a1, a2, a5), (a1, a3, a7), (a2, a3, a6), (a1, a4, a5), (a2, a4, a6)

(a5, a6, a9), (a6, a7, a8), (a1, a8, a9), (a2, a7, a9)

3G
(a1, a4, a7), (a1, a5, a8), (a1, a6, a9), (a2, a4, a7), (a2, a5, a8)

(a2, a6, a9), (a3, a4, a7), (a3, a5, a8), (a3, a6, a9)

1G (a1, a4, a7), (a2, a5, a8), (a3, a6, a9)

N
o
n
-c

o
rr

el
a
te

d

2G
(a1, a4, a5), (a1, a3, a7), (a4, a7, a8), (a1, a2, a5), (a2, a4, a8)

(a5, a8, a9), (a3, a6, a8), (a1, a6, a9), (a3, a4, a9)

3G
(a1, a2, a3), (a1, a5, a6), (a1, a8, a9), (a2, a3, a4), (a4, a5, a6)

(a4, a8, a9), (a2, a3, a7), (a5, a6, a7), (a7, a8, a9)

Table 4. SSE and real k′ values using MDAV-k and Mic1D-κ methods assuming that
different groups of variables are known by the intruder using the Census data set

SSE k′

1G 2G 3G

M
D

A
V

-k

5 64.99 5.00 1.92 1.00
25 223.73 25.12 7.00 1.09
50 328.31 51.43 14.66 1.41
75 382.34 77.14 23.18 1.96

100 428.68 108.00 35.00 3.33

M
ic

1
D

-κ

3000 32.27 8.37 9.87 5.77
3200 89.18 11.97 13.76 8.26
4000 129.06 20.10 22.09 13.89
4400 310.63 23.15 26.94 17.01
5000 738.12 72.83 76.08 55.02

Correlated attributes

SSE k′

1G 2G 3G

M
D

A
V

-k

5 58.49 5.00 1.96 1.02
25 260.13 25.12 7.35 1.24
50 356.47 51.43 15.86 2.05
75 563.79 77.14 24.38 2.83

100 721.91 108.00 36.14 4.62

M
ic

1
D

-κ

3000 32.27 5.63 8.51 8.04
3200 89.18 8.01 11.95 11.83
4000 129.06 13.53 19.45 19.19
4400 310.63 16.62 23.64 22.45
5000 738.12 59.77 67.72 67.25

Non-correlated attributes

in the non-correlated). Since the size of the three microagreggation blocks is
3, there are only three options to consider. We denote this case by 1G. Since
the intruder only has access to data from one group, MDAV ensures the k-
anonymity property (this is the best possible scenario for MDAV). However, note
that, usually, the intruder cannot choose the attributes obtained from external
sources and it might be difficult to obtain all the attributes in the same group.
Second, we assume that the known attributes belong to two different MDAV
microaggregated groups. There are many possible combinations of three
attributes under this assumption, so nine of them were chosen randomly. We
refer to this case as 2G. Finally, case 3G is defined analogously to 2G, and also
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Table 5. SSE and real k′ values using MDAV-k and Mic1D-κ methods assuming that
different groups of variables are known by the intruder using the Water data set

SSE k′

1G 2G 3G

M
D

A
V

-k

5 28.18 5.09 1.94 1.00
10 46.14 10.00 3.14 1.01
15 72.03 15.20 4.42 1.01
20 94.24 20.00 5.75 1.04
25 114.56 25.33 7.28 1.10

M
ic

1
D

-κ

300 32.67 1.62 1.51 1.10
500 65.89 3.25 3.39 1.76
800 80.95 7.87 7.55 4.67
850 132.13 9.65 10.03 6.65
900 255.64 12.95 13.61 9.14

Correlated attributes

SSE k′

1G 2G 3G

M
D

A
V

-k

5 69.51 5.00 2.03 1.03
10 126.21 10.00 3.55 1.16
15 173.96 15.20 5.28 1.39
20 259.07 20.00 7.00 1.53
25 247.58 25.33 9.22 1.91

M
ic

1
D

-κ

300 32.67 1.11 1.35 1.35
500 65.89 1.78 2.58 2.63
800 80.95 4.74 7.17 6.88
850 132.13 6.54 9.77 8.67
900 255.64 9.07 14.52 11.71

Non-correlated attributes

nine possibilities of known attributes are considered. Note that, in both scenar-
ios 2G and 3G, k-anonymity is not ensured by MDAV. Note also that, if the
intruder had more than three attributes, it would not be possible to consider
1G. We are considering the case were the intruder only has three attributes to
study a scenario were MDAV can still preserve k-anonymity.

The first column of Tables 4 and 5 presents the SSE values for all the parame-
terizations and situations described before. Note that the range of SSE covered
by the two methods is similar, so this allows us to compare the disclosure risk
of both methods fairly. For all these scenarios, we compute k′ and the mean of
all the k′ values in each situation is presented in the second, third and fourth
columns. Note that, whereas MDAV is affected by the fact that the chosen at-
tributes are correlated or not, this effect is not noticeable using Mic1D − κ.
Specifically, when the attributes in a group are not correlated, the information
loss (SSE) using MDAV tends to be increased since we are trying to collapse
the records in a single value, using three independent attributes or dimensions.
Nevertheless, this effect can be neglected with our technique since, thanks to
the data preprocessing, the whole microaggregation process is performed on a
single dimension (vector of values), the semantics of attributes are ignored and
the effect caused by attribute correlations is avoided.

Results show that, in general, Mic1D − κ achieves lower disclosure risk lev-
els (larger values of k′) than those achieved by MDAV for similar information loss
(SSE), especially when the attributes chosen come from differentmicroaggregated
groups (2G and 3G), which is the most common case. When the intruder has ac-
cess to the three attributes coming from a single microaggregated group, MDAV
presents k′ values which are similar or, in some cases, even larger than those ob-
tained by Mic1D − κ (comparing cases with similar SSE). This is normal since
MDAV preserves the k-anonymity in this case. However, in the remaining scenarios
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(2G and 3G), that represent most of the cases, Mic1D−κ achieves larger k′ values
than those obtained by MDAV when similar SSE values are compared.

5 Conclusions and Future Work

In this paper, we have presented a new type of microaggregation called One Di-
mension microaggregation. This microaggregation method significantly diminish
the problem of attribute selection in multivariate microaggregation achieving
in general a higher level of privacy than that obtained by MDAV, one of the
most well-known microaggregation methods. This is specially true as, from the
attributes known by the intruder, the number of these coming from different
microaggregation groups of MDAV increases.

As future work, we plan to further study One Dimension microaggregation
using other information loss and disclosure risk measures. We also plan to develop
and implement a method for vector partitioning which considers the SSE value
when the partitions are done so that we can reduce the SSE value of our method
and, therefore, the information loss.

All in all, in this paper we show that microaggregation can be a very useful
method for the anonymization of complex records containing a large number of
attributes, when it is combined with the data preprocessing proposed in our work.
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Abstract. Steganographic file systems are file systems where the loca-
tion and even the existence of files are unknown to the users not having
stored them. If the file system can be written to by several users, a user
may inadvertently damage the files stored by other users. In this pa-
per, solutions to the collision problem are proposed which rely on error-
correcting codes. The storage efficiency and the privacy offered by the
proposed protocols are analytically assessed.

Keywords: Information privacy and security, steganographic file sys-
tems, error-correcting codes.

1 Introduction

Steganographic file systems [1] were introduced a decade ago as file systems
where the location and even the existence of files are unknown to the users not
having stored them. This feature is a problem when the file system is a shared
one that can be written to by several users: as a result of a (unknown) collision,
a user may inadvertently damage the files stored by other users [5].

There are two simplistic approaches to deal with the collision problem:

– Privacy reduction. A possible solution is to reduce the risk of collisions be-
tween users by reducing the freedom of each user for placing her file in the
system. However, the smaller the freedom, the smaller is privacy: the loca-
tion of the files of a user becomes easier to guess by other users or by external
intruders.

– Efficiency reduction. If the total size of user files stored in the steganographic
file system is less than the size of the file system by several orders of magni-
tude, collisions are unlikely to occur. However, this entails a very inefficient
storage use.

1.1 Contribution and Plan of This Paper

Intermediate solutions between the two simplistic approaches above are explored
in this paper. We present a shared steganographic file system protocol whose aim
is to offer a tradeoff between privacy and storage efficiency.

V. Torra and Y. Narukawa (Eds.): MDAI 2008, LNAI 5285, pp. 227–238, 2008.
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Section 2 describes a collision-resistant file system where user files are stored
as segments of straight lines in a two-dimensional space. Section 3 analyzes
the effects of discretization on privacy and storage efficiency. Section 4 sketches
conclusions and future work.

2 A Collision-Resistant Shared Steganographic File
System in the Plane

Consider a steganographic shared file system FS whose storage space consists
of a publicly readable bit matrix

M = {mij : 0 ≤ i, j ≤ N − 1}

of size N × N , for a large positive integer N . Let the bits mij be randomly
initialized (e.g. a bit can be set to 0 or 1 with probability 1/2). We assume that
the file system FS is trusted to keep secret the locations where files are recorded.

A first naive protocol allowing a user U to store a file in M is given below.
The protocols in this paper all use pseudorandom number generators seeded by
an initial value only known to each user, so that the user can reproduce at any
moment the pseudorandom values she has previously generated (e.g. to recover
from the file system the files she has stored in it). Also, the protocols in this paper
assume that the user is able to privately send information to the file system (e.g.
by encrypting it under the file system’s public key).

Protocol 1

1. Let F = (f0, · · · , fl−1) be a bit vector representing the file that U wants to
store in FS. Let {SF

i : i ≥ 0} be a pseudorandom sequence generated by U
specifically for file F . For i = 0 to l − 1, U computes E = (e0, · · · , el−1),
where ei := fi ⊕ SF

i and ⊕ is addition modulo 2.
2. U pseudorandomly selects a slope a ∈ R, an integer intercept b and an integer

offset c, the latter randomly drawn from {0, · · · , N −1}. (In this protocol and
in the remaining ones of this paper, intercepts and slopes are sampled from a
uniform distribution, and slopes are selected by uniformly sampling an angle
from [−π/2, π/2) and then taking as slope the tangent of that angle.)

3. U privately sends a, b, c and E to FS.
4. For i = 0 to l − 1, FS stores ei in the component (xi, yi) of M, where if

|a| ≥ 1 or a = 0
xi = (i + c) mod N

yi = [a(i + c) + b] mod N

and if |a| ∈ (0, 1)
xi = [(1/a)(i + c) + b] mod N

yi = (i + c) mod N
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with [·] being the integer rounding operator. Thus, E is stored as a segment
of a pseudorandomly chosen straight line. (If slopes |a| ∈ (0, 1) were not
handled separately, one would come up with many points sharing the same
ordinate yi due to rounding, which could result in a lot of overlap at the
crossing of lines with slopes under 1.) In order to prevent E from wrapping
around itself regardless of the slope a, one must require l ≤ N .

To recover file F from FS, a user U must know (a, b, c, l) and the pseudorandom
sequence {SF

i : i ≥ 0}. Thanks to the use of the pseudorandom sequence {SF
i |i

≥ 0}, Protocol 1 fulfills the standard requirement of steganographic file systems
that stored files should be indistinguishable from the random, unused positions.
As an additional precaution, FS is assumed to randomly tweak straight segments
formed by unused bit positions from time to time; those fake file insertions thwart
intruders from trying to infer the location of files by observing the changes in
the bit matrix.

A problem when using Protocol 1 in a shared file system is that the segments
corresponding to files of different users might cross each other. This is a concern
only for shared file systems: if there was a single user, one could assume she can
select the parameters for her files so that no crossing occurs. If a file F ′ is stored
after a file F and the segments of both files cross each other, the bit of F ′ at
the crossing position overrides the bit of F . With probability 1/2, this causes an
error in file F . This has two undesirable effects, which we next describe along
with possible solutions:

– Errors damage the integrity of the stored files. Using error-correcting codes
(ECC) to encode files before storage appears as a natural way to mitigate
this problem.

– Even if errors can be corrected, their very existence may leak to a user the
location of the files belonging to other users. Indeed, assume that a user U
stores two files F1 and F2 in the file system and then keeps retrieving both
files very often in order to detect any simultaneous appearance of errors in
them due to their being crossed by a new file. Now, if a user U ′ stores a new
file F ′ that crosses F1 and F2 and both crossings cause simultaneous single-
bit errors in F1 and F2, respectively, U can infer that F ′ lies on the straight
line connecting both erroneous bit positions. A possible way to repair this
weakness would be to require that the bits of each file be randomly shuffled
by the file system using a secret permutation different for each file; but this
would require the help of the file system for file retrieval, which would be a
disadvantage with respect to Protocol 1 above. A better option is to divide
M into several tiles and to split a file into fragments and store each fragment
in a different tile, which makes it difficult for an intruder U to locate all the
fragments of a file by merely watching the crossing errors.

From now on, by a [n, k] ECC we mean an error correcting code with length n
and dimension k. Its transmission rate is R = k

n (e.g. see [4]). If the minimum
distance of the code is d, then its correction capability is t := *d−1

2 +.
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Protocol 2 below incorporates the above solutions to deal with crossing errors.
The idea is to make tiling compatible with the storage of large files, by using
several tiles to store a file: thus, only a fragment of the file is stored in a particular
tile. The N × N bit matrix M is considered to be divided into h2 tiles of size
N/h × N/h for some integer divisor h of N . For each tile Tr,s, the file system
maintains a global counter νr,s initially set to 0 that counts the number of file
fragments stored in the tile.

Protocol 2

1. Let F = (f0, · · · , fl−1) be a bit vector representing the file that U wants to
store in FS.

2. U encodes F using a binary [n, k] ECC with n ≤ N/h, to obtain an encoded
file E = (e0, · · · , em−1).

3. U generates a pseudorandom sequence {SE
i : i ≥ 0} specifically for file E

and computes E′ = (e′0, · · · , e′m−1), where e′i := ei ⊕ SE
i for i = 0 to m − 1.

4. U computes a pseudorandom enumeration of the tiles whose global counter
is less than t + 1; each tile appears in the enumeration a number of times
equal to the difference between t + 1 and its global counter (in general, rep-
etitions of the same tile appear in different positions of the pseudorandom
enumeration). Let the enumeration be Tr0,s0 , Tr1,s1 , · · · Each file fragment in
a tile can contain up to N/h bits of E′, so as many tiles from the enumera-
tion will be taken in turn as needed to store the m bits of E′. If the number
h′ of necessary tiles is greater than the number of tiles in the enumeration,
then exit the Protocol (there is insufficient storage to hold E′). Note that,
initially, all h2 tiles can be used, so m can be as large as Nh(t + 1) bits,
which implies a maximum l as large as *Nh(t+1)

n +k; the maximum size of
storable new files will decrease as the number of tiles holding already t + 1
file fragments increases.

5. For 0 ≤ j < h′ user U pseudorandomly selects a slope arj,sj ∈ R, an inte-
ger intercept brj,sj and an integer offset crj,sj , with the latter two randomly
drawn from {0, · · · , N/h − 1}.

6. U privately sends to FS the indexes of the h′ chosen tiles and the slopes,
intercepts and offsets chosen for each tile. U publicly sends E′ to FS.

7. For 0 ≤ j < h′ the file system FS does:
(a) Let νrj ,sj = νrj ,sj + 1;
(b) For i = 0 to N/h−1, store the bit e′jN/h+i of E in the component (xi, yi)

of M, where if |a| ≥ 1 or a = 0

xi = rjN/h + ((i + crj ,sj ) mod (N/h))

yi = sjN/h + ([arj ,sj (i + crj,sj ) + brj ,sj ] mod (N/h))

and if |a| ∈ (0, 1)

xi = rjN/h + ([(1/arj,sj )(i + crj ,sj ) + brj,sj ] mod (N/h))

yi = sjN/h + ((i + crj ,sj ) mod (N/h))
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If slopes |a| ∈ (0, 1) were not handled separately in the above protocol, one would
come up with many points sharing the same ordinate yi due to rounding, which
could result in a lot of overlap at the crossing of lines with slopes under 1. The
following lemma is a quantification of storage efficiency.

Lemma 1. The maximum storage efficiency achievable by Protocol 2 when us-
ing a [n, k] ECC is *Nh(t+1)

n + k
N2 . Consequently, if Nh(t+1)

n , *Nh(t+1)
n + then

the maximum storage efficiency is approximately (t + 1)Rh/N , where R is the
transmission rate of the code.

Proof: The optimum case is the one mentioned in Step 4 of Protocol 2: a file
of size *Nh(t+1)

n +k is stored across the tiles. By diving this file size by the total
storage available N2, we get the efficiency above. �
In the above protocol, tiles should stay large enough so that they can still be
viewed as plane regions and bits can be viewed as “points” in those regions: e.g.
if a tile consists of very few bits, rounding when computing straight segments
causes a lot of crossings to occur (see Section 3.2 below for an analysis of the
impact of multibit crossings on efficiency).

As to privacy, in Protocol 2 tiles only contain fragments of a file, which is thus
harder to locate. Indeed, to locate a file an intruder needs to determine which
tiles store fragments of the file and, within each of those tiles, where does the line
storing the corresponding fragment lie. See Section 3.1 below for a discussion on
the difficulty of guessing a specific line within a certain tile.

The price paid for the above advantages of Protocol 2 is that the user needs to
keep more information to recover a file than in Protocol 1: h′ slopes, intercepts
and offsets (instead of a single slope, intercept and offset required by the previous
protocols).

Example 1. Consider a shared steganographic file system with a bit matrix M
of size 220 × 220 (1 Terabit). Divide M into 25 × 25 tiles of 215 × 215 bits each.
Consider the primitive BCH code of length 215 − 1 over F2 with designed cor-
rection capability equal to t = 10 (i.e. designed minimum distance equal to 21).
Its dimension is 32617. This means that within each tile we can encode up to
32617 bits of t+1 = 11 file fragments as 11 codewords of length 215 − 1. If these
codewords are inserted in the file system and they only cross each other at one
bit position, it will be possible to correct at retrieval time any error in any of
the 11 file fragments that is due to crossings. A total of 1024× 11 file fragments
with at most 32617 bits each can be inserted in M. In this case, the maximum
storage efficiency is approximately 0.000334146 , 3 · 10−4.

Alternatively, we can also divide M into 210 × 210 tiles of 210 × 210 bits
each. Consider the primitive BCH code of length 210 − 1 over F2 with designed
correction capability equal to t = 10 (i.e. designed minimum distance equal
to 21). Its dimension is 923. This means that within each block we can encode
11 file fragments with at most 923 bits each as 11 codewords of length 210 −1. If
these codewords are inserted in the file system and they only cross each other at
one bit position, it will be possible to correct at retrieval time any error in any



232 J. Domingo-Ferrer and M. Bras-Amorós

of the 11 stored file fragments that is due to crossings. A total of 220 × 11 file
fragments with at most 923 bits can be inserted in M. In this case, the maximum
storage efficiency is approximately 0.0096921 , 10−2. �

3 The Effects of Discretization on Privacy and Efficiency

In Section 2, we have used the idealization that the bit matrix M can be regarded
as a plane, where files are stored as straight lines. In fact, M is a grid, so files
are stored as near-straight lines with discretized slopes. This has some practical
consequences:

– Unlike in a tile in a continuous plane, in an N × N grid, the maximum
length of a straight line as we define it can be no more than N regardless of
its slope, which is consistent with the limitation on the length of the stored
files in the above protocols.

– In a grid, the range of possible values for the slopes and the intercepts is
finite [3], which has privacy implications: the uncertainty of an intruder about
the location of the line storing a particular file is finite.

– In a grid, two discretized “straight” lines may cross each other in more
than one bit position. This has implications for efficiency: there may be
more than one error caused by the crossing of two files, which further limits
the number of storable files in an error-free manner with respect to the
continuous idealization used in Section 2.

In the next subsections, we analyze the above mentioned privacy and efficiency
implications.

3.1 Discretization and Privacy

The protocols above encrypt the file by adding a pseudorandom sequence to it
in order to conceal its redundancy in front of an intruder. However, the intruder
could blindly (i.e. randomly) try to guess the line segment where a file or file
fragment is stored. If she succeeded at that, she could for example tweak all
bits along that line to destroy the file or file fragment; or she could attempt
its decryption. Therefore, the intruder’s uncertainty about the slope and the
intercept of the line are measures of privacy.

For the sake of clarity, we make the following simplifications:

– We will initially assume that no tiling is used and that straight lines are
stored in the entire N × N bit matrix M. (To adapt the discussion for the
case of tiling, the length N/h of the tile side must be used instead of N .)

– We will assume that the length of the file is the maximum value N . This
is the worst case for privacy, because for files with maximum length, the
intruder does not need to worry about the file length l and the offset c.

If M is an N × N grid, the intercept b is an integer value between 0 and N − 1,
where all values in the range have the same probability from the intruder’s
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Table 1. Discretized slopes and their probabilities in an N × N bit matrix

Index i Slope âi Probability p(âi)

0 −∞ (arctan(−2(N − 1)) + π/2)/π
1 −(N − 1) (arctan(−2(N − 1)/3) − arctan(−2(N − 1)))/π
2 −(N − 1)/2 (arctan(−2(N − 1)/5) − arctan(−2(N − 1)/3))/π
3 −(N − 1)/3 (arctan(−2(N − 1)/7) − arctan(−2(N − 1)/5))/π

· · · · · · · · ·
N − 1 −1 (arctan(−(N − 3/2)/(N − 1)) − arctan(−(N − 1)/(N − 3/2)))/π

N −(N − 2)/(N − 1) (arctan(−(N − 5/2)/(N − 1)) − arctan(−(N − 3/2)/(N − 1)))/π
N + 1 −(N − 3)/(N − 1) (arctan(−(N − 7/2)/(N − 1)) − arctan(−(N − 5/2)/(N − 1)))/π

· · · · · · · · ·
2N − 2 0 (arctan(1/(2(N − 1))) − arctan(−1/(2(N − 1))))/π
2N − 1 1/(N − 1) (arctan(3/(2(N − 1))) − arctan(1/(2(N − 1))))/π

2N 2/(N − 1) (arctan(5/(2(N − 1))) − arctan(3/(2(N − 1))))/π
· · · · · · · · ·

3N − 3 1 (arctan((N − 1)/(N − 3/2)) − arctan((N − 3/2)/(N − 1)))/π
3N − 2 (N − 1)/(N − 2) (arctan((N − 1)/(N − 5/2)) − arctan((N − 1)/(N − 3/2)))/π

· · · · · · · · ·
4N − 3 N − 1 (arctan(2(N − 1)) − arctan(2(N − 1)/3))/π
4N − 4 +∞ (π/2 − arctan(2(N − 1)))/π

viewpoint. Thus, Shannon’s entropy can be used to measure the intruder’s un-
certainty about the intercept as

H(b) = log2 N (1)

The analysis for the discretized slope â is a bit more complex. We will give a
lower bound for the entropy H(â). A subset of the possible slopes in an N × N
matrix is listed in the second column of Table 1: those 4N −3 slopes are obtained
when a straight segment starting at one corner of the N × N grid successively
touches the bit positions in the opposite edges of the grid (similar to the hand of
a clock touching the marks of the seconds). If these were the only possible slopes,
from the intruder’s point of view, the probability p(â) of each discretized slope â
is proportional to the size of the fraction of the angular range [−π/2, π/2) such
that the continuous slopes with angles in that fraction round to â. For example,

p(+∞) = (π/2 − arctan((N − 1)/(1/2)))/π

p(N − 1) = (arctan((N − 1)/(1/2)) − arctan((N − 1)/(3/2)))/π

and so on (see third column of Table 1). In this way, the intruder’s
uncertainty on the slope can be lower-bounded as

H(â) ≥ −
4N−4∑
i=0

p(âi) log2 p(âi) (2)

The following conclusions on privacy can be drawn:

– The overall privacy can be measured as the joint entropy H(â, b) = H(â) +
H(b), where additivity holds because â and b are independently selected.
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– As it could be expected, both H(b) and the lower bound for H(â) increase
with N . Since using tiles instead of the entire matrix involves replacing N
with N/h, the privacy of the slope and the intercept within a tile is reduced.

– In Protocol 2, a file is stored across several tiles, each with its own slope
and intercept. Assuming the worst case in which the intruder has man-
aged to determine the h′ tiles holding the file, the intruder’s uncertainty
on the tile intercepts and slopes can be measured by the following joint
entropies

H(br0,s0 , · · · , brh′−1,sh′−1
) =

h′−1∑
i=0

H(bri,si) (3)

H(âr0,s0 , · · · , ârh′−1,sh′−1
) =

h′−1∑
i=0

H(âri,si) (4)

where we have used that the slopes and intercepts are independently chosen
for each tile.

3.2 Discretization and Efficiency

Two randomly chosen straight lines over the plane cross each other with prob-
ability 1 and the crossing consists of a single point. However, two discretized
straight lines over an N × N grid may cross each other at more than one point.
We analyze in this section the implications of this fact. For simplicity, we assume
that the file system consists of a single tile (no tiling); the adaptation to several
tiles is straightforward.

The first thing to note is that two discretized straight lines may have several
crossings because of the modular operations. See the left-hand side of Figure 1
for an illustration. The discretized versions of y = x (black dots) and y = 5x
(white dots) are depicted on an N × N grid, where N = 24; the number of
crossings is four.

Secondly, the overlap at each crossing can consist of several bits, depending
on the slopes of both lines. See the right-hand side of Figure 1. There, the
discretized versions of y = 10x/3 and y = 16x/5 are depicted; there is a single
crossing which involves four bits.

Analytically counting the expected number of crossings and the number of
overlaps per crossing is by no means straightforward. We refer the reader to [2]
for a preliminary discussion of this problem. For the sake of pragmatism, we
have chosen here a simulation approach.

For N ∈ {2i : i = 9, · · · , 21} and t ∈ {1, · · · , 9} we have conducted the
following experiment:

1. Repeat 5000 times
(a) Throw t + 1 random digital straight lines of length N like the ones

described in Protocol 1 into an N × N bit matrix;
(b) Count the number xN,t of overlaps between the first line thrown and the

subsequent t lines;
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Fig. 1. Crossings of two discretized straight lines. Left, two lines with several crossings.
Right, two lines with one crossing involving several bits.

2. Compute the histogram of the relative frequencies of the random variable
XN,t modeling the number of overlaps;

3. Compute the expected value E(XN,t) of the number of overlaps;
4. Compute the variance σ2

XN,t
of the number of overlaps;

For each choice of N and t, we are interested in finding a value t′ such that
P (XN,t ≤ t′) ≈ 1. We make the simplifying assumption that successive overlaps
in a line occur independently. In this case, when throwing two discretized straight
lines, the probability that a bit in the first line thrown is “trodden” by the
second line can be estimated as p = E(XN,1)/N . When throwing t + 1 lines, the
probability that a bit in the first line is trodden by any of the subsequent t lines
can be estimated as p′ = 1 − (1 − p)t. Now, the number of bits in the first line
that are trodden by any of the subsequent t lines can be modeled as a binomial
random variable with N trials and success probability p′. Therefore, under the
above independence assumption, E(XN,t) can be approximated as

Np′ (5)

and σ2
XN,t

can be approximated as

Np′(1 − p′) (6)

In Figure 2, for N = 29 and N = 212 and several values of t we depict E(XN,t)
and E(XN,t)+3σ2

XN,t
, as well as their approximations resulting from Expressions

(5) and (6). Figure 3 is analogous for 215 and 218, respectively. Two observations
are in order here:

– The experimental results obtained show that over 99% of the area in the
histograms of XN,t for all N and t tried lies left of E(XN,t) + 3σ2

XN,t
.

– The independence-based approximations resulting from Expressions (5)
and (6) overestimate the corresponding empirical magnitudes for all t tried,
except t = 1.
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Fig. 2. Top: For N = 29 and several values of t (abscissae), A) Empirical E(XN,t); B)
Approximation Np′; C) Empirical E(XN,t)+3σ2

Xn,t
; D) Approximation Np′+3Np′(1−

p′). Bottom: same for N = 212 and several values of t.

Therefore, to adapt protocols in Section 2 and Lemma 1 on efficiency to the real
situation of discrete lines with multibit overlaps we must use a binary ECC with
error-correction capability t′ which, with probability almost one, is greater than
the number of errors caused by overlaps in any stored file. It follows from the
empirical discussion above that a suitable choice when t > 1 is
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Fig. 3. Top: For N = 215 and several values of t (abscissae), A) Empirical E(XN,t); B)
Approximation Np′; C) Empirical E(XN,t)+3σ2

Xn,t
; D) Approximation Np′+3Np′(1−

p′). Bottom: same for N = 218 and several values of t.

t′ := Np′ + 3Np′(1 − p′) (7)

To use Expression (7), only E(XN,1) needs to be computed empirically. For
t = 1, a suitable choice is

t′ := E(XN,1) + 3σ2
XN,1
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Note that we are placing ourselves in the worst case in which every overlap
causes one error (the actual probability of an overlap causing an error is 1/2).
As one would expect, usually t′ > t, which decreases storage efficiency with
respect to the continuous idealization of Section 2 because a t′-correcting code
will normally have a lower transmission rate than a t-correcting code.

4 Conclusion

This contribution has presented protocols for storing files in a shared stegano-
graphic file system. Their novelty is that they deal with the errors caused by
successive file insertions. The privacy and the storage efficiency offered by the
proposed approach have been quantified.

Future work will include finding alternative ways to store files which, with-
out degrading privacy, are more storage-efficient than straight lines and/or can
guarantee 100% correction probability.
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Valls, Aida 134
Van de Weghe, Nico 15

Yin, Jianping 179
Yoshida, Yuji 26

Zhao, Wentao 179
Zhu, En 179


	Title Page
	Preface
	Organization
	Table of Contents
	Invited Papers
	Toward Elucidating Language Functions in the Brain
	Privacy-Preserving Similarity Evaluation and Application to Remote Biometrics Authentication
	Introduction
	Preliminaries
	Similarities
	Secure Commitment
	Zero-Knowledge Proof of Commitment

	Private Similarity Evaluations
	Overview and Assumption
	Private Cosine Correlation Evaluation
	Private Euclidean Distance Evaluation

	Evaluation
	Feature Vector
	Accuracy
	Performance
	Security

	Conclusions
	References


	Regular Papers
	Aggregation Operators
	Suitability Maps Based on the LSP Method
	Introduction
	Design of S-Maps
	Evaluation of Urban Expansion Suitability
	Data Availability and Reliability Problems
	Conclusions
	References

	Aggregated Mean Ratios of an Interval Induced from Aggregation Operations
	Introduction
	Aggregation Operators
	Quasi-arithmetic Means
	The Quasi-arithmetic Means and Translation Invariance
	Aggregated Mean Ratios of the Quasi-arithmetic Means
	Dual Quasi-arithmetic Means
	Examples
	References

	WOWA Enhancement of the Preference Modeling in the Reference Point Method
	Introduction
	Scalarizations of the RPM
	WOWA Extension of the RPM
	Linear Programming Implementation
	Conclusions
	References

	Uninorms and Non-contradiction
	Introduction
	Preliminaries
	MainResults
	The Class $\mathcal{U}_{\min}$
	Representable Uninorms
	]0, 1[-continuous Uninorms
	Idempotent Uninorms

	Conclusions
	References

	Choquet Stieltjes Integral, Losonczi’s Means and OWA Operators
	Introduction
	Fuzzy Measures and the Choquet Stieltjes Integral
	On Some Aggregation Operators
	Generalized OWA Operator
	On the Relationships between Operators
	The Losonczi’s OWA
	Conclusions
	References

	The Polytope of Fuzzy Measures and Its Adjacency Graph
	Introduction and Basic Concepts
	More Results about the Adjacency
	The Diameter of ${\cal FM}(X)$
	Some Results about the Facets of ${\cal FM}(X)$
	${\cal FM}(X)$ Is Combinatorial
	Conclusions and Open Problems
	References


	Decision Making
	On Consensus Measures in Fuzzy Group Decision Making
	Introduction
	Approaches to Obtain Soft Consensus Measures in Fuzzy GDM Problems
	Discussion
	New Advanced Approaches
	Approaches Generating Recommendations to Help Experts
	Adaptive Approaches

	Concluding Remarks
	References

	SBM and Bipolar Models in Data Envelopment Analysis with Interval Data
	Introduction
	Data Envelopment Analysis with Interval Data
	SBM Model for Interval Input-Output Data
	SBM Model for Crisp Input-Output Data
	Extension to the Case of Interval Input-Output Data

	Bipolar Evaluation Based on Interval Data
	Inverted DEA
	Inverted DEA with Interval Input-Output Data

	Conclusions
	References

	A Comparison between Two Approaches to Threat Evaluation in an Air Defense Scenario
	Introduction
	Threat Evaluation
	Bayesian Networks
	Implementation

	Fuzzy Logic
	Fuzzy Sets and Membership Functions
	Logical Operations on Fuzzy Sets
	Fuzzy Inference Rules
	Implementation

	Comparison
	Conclusion and Future Work
	Future Work

	References


	Clustering and Similarity
	Fuzzy Classification Function of Standard Fuzzy $c$-Means Algorithm for Data with Tolerance Using Kernel Function
	Introduction
	Preliminaries
	Notation
	Standard FCM for Data with Tolerance Using Kernel Functions

	Fuzzy Classification Function of K-FCM-T
	Fuzzy Classification Function for FCM
	Fuzzy Classification Function for K-sFCM-T

	Numerical Examples
	Conclusion
	References

	A Similarity Measure for Sequences of Categorical Data Based on the Ordering of Common Elements
	Introduction
	Review of Dissimilarity Measures
	Dissimilarity Functions for Numerical Variables
	Dissimilarity Functions for Categorical Variables

	Description of the Data Sequences to Compare
	A New Similarity Measure: Ordered-Based Sequence Similarity
	Experiments
	Conclusions and Future Work
	References

	Analytical and Numerical Evaluation of the Suppressed Fuzzy C-Means Algorithm
	Introduction
	Background
	Fuzzy C-Means
	Hard C-Means Clustering
	Suppressed Fuzzy C-Means

	What Is the Suppressed Fuzzy C-Means Algorithm?
	What Kind of Competition Does Suppression Introduce?
	Is s-FCM Optimal? If so, What Does It Minimize?

	Numerical Analysis
	Conclusions
	References

	Generalized Agglomerative Clustering with Application to Information Systems
	Introduction
	Generalization of Agglomerative Clustering
	Dissimilarity in an Information System
	Agglomerative Clustering and Hierarchical Classification
	Poset-Valued Hierarchical Classification

	Inner Product Space for Information Systems
	Kernel-Based Methods

	A Fuzzy Subset System for a Dissimilarity
	Conclusion
	References


	Computational Intelligence and Optimization
	A Comprehensive Study on Reducts in Dominance-Based Rough Set Approach
	Introduction
	Dominance-Based Rough Set Approach and Reducts
	Dominance-Based Rough Set Approach (DRSA)
	Properties of Upper and Lower Approximations
	Generalized Decision
	Previous Reducts in DRSA

	Class-Based Reducts in DRSA
	Approximations of Decision Classes
	Class-Based Reducts

	A Unified Approach to Discernibility Matrices
	Reducts Based on Generalized Decisions
	Discernibility Matrices

	Conclusions
	References

	Graph-Based Active Learning Based on Label Propagation
	Introduction
	Preliminaries
	Basic Notation
	Semi-supervised Learning

	A Framework of Entropy Reduction for Graph-Based Active Learning
	The Graph-Based Active Learning Method
	Learning Engine in GAL
	Sampling Engine in GAL
	The Process of Graph-Based Active Learning

	Experimental Results
	Methodology
	Results

	Conclusions
	References

	Golden Complementary Dual in Quadratic Optimization
	Introduction
	Duality
	Golden Duality
	Inverse-Golden Duality

	Lagrangean Method
	Conclusion
	References


	Data Privacy
	A Linear-Time Multivariate Micro-aggregation for Privacy Protection in Uniform Very Large Data Sets
	Introduction
	Background
	Our Proposal
	Rationale
	Algorithm
	AnalyticalModel
	Model Validation
	Tuning the $\ell$ Value
	Dealing with Non-uniform Data Distributions

	Experimental Results
	Conclusions
	References

	Improving Microaggregation for Complex Record Anonymization
	Introduction
	Preliminaries
	Statistical Data Protection
	Microaggregation
	MDAV Microagregation
	Performance Measure for Microaggregation

	One Dimension Microaggregation
	Experimental Results
	Conclusions and Future Work
	References

	A Shared Steganographic File System with Error Correction
	Introduction
	Contribution and Plan of This Paper

	A Collision-Resistant Shared Steganographic File System in the Plane
	The Effects of Discretization on Privacy and Efficiency
	Discretization and Privacy
	Discretization and Efficiency

	Conclusion
	References



	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




